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Abstract. We consider a simple mechanical model which exhibits supercritical pitchfifurcation. We
further discuss symmetry preserving and symmetry broken phégies model. An analytical time dependent
solution is then constructed which interpolates between these two phasedsdNéscuss the similarities of
our model with coninuous phase transition. We argue that an analoguiticdl exponents in our model can
be constructed via a suitable Landau like expansion of the potential.

Communicated by: L. Satpathy

1. INTRODUCTION

Bifurcation theory explains many natural phenomena. Thpgse of this project is to analyse a
simple mechanical model which exhibits supercritical fifion. It also shares some features of
symmetry breaking and continuous phase transition.

The phenomena of bifurcation has one common cause: a spphifgical parameter crosses
a threshold and consequently it forces the system to orgatself to a new state. This specific
state differs significantly from the original one. The stabé a system generally correspond to the
solutions of a nonlinear equation. A state can be obseniedittable. However, if that state loses
its stability when a parameter reaches a critical valuey the state is not observed. The system
then generally organizes itself to a new stable state —weguasbifurcation from the original one.

A simple example of bifurcation is known as pitchfork bifation. Here the solution of the
nonlinear equation bifurcates in pairs and generally the@éting state has less symmetry than the
original one — often called a symmetry broken state. The lestf such example is described by
the solutions of the following equation:

3 —\x =0, 1)

where) is a parameter andlis real. Fo\ < 0, there is only one solution = 0. However, for\ > 0,
two new solutions appear at= ++/\. It is possible to construct a ‘potential’ whose extrimiaat
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Figure 1. Solutions bifurcate in pairs whenbecomes positive

gives (1)
Viz,\) = /(x?’ — Az)dz = i(x4 —2X\z?). 2

Note thatV is symmetric under: — —z. From the structure of the potential, one immediately
realises that fon < 0, V minimizes atx = 0. We call this a symmetric phase. However, this
ground state becomes unstable when- 0 and two new minima appear at non-zero values: of
symmetrically around: = 0 line. As soon as the system reaches one of this states, the—z
symmetry gets broken. We call this a symmetry broken phase.

Our purpose is now to introduce a mechanical model which sh&weh bifurcation. This is
what we do in the next section. Subsequently, we study tinpem#gent solutions associated with
the crossover from symmetric phase to the symmetry brokesghWe then study as to how our
model brings out a simple analogy with second order phaasitian. Second order phase transition
appears in many thermodynamic systems - ferromagneticigdtesing its magnetization with the
increase of temperatue is one such example. We end our pwitb@ discussion of our results.

2. THE MODEL

The system is an inverted pendulum where a rigid rod of nidgignass is pivoted about its lower
end with a torsion spring [1]. This spring provides the rasptorque proportional to the angular
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displacement from the equilibriutn See the figure for the details of the system.

K

A load of weightP is applied vertically on the top of the rod. The equation otiomthat this rod
of length L has to satisfy can be found from torque ballance equatiois. i$lyiven by

d?a

dt?
where! is the moment of inertia of the rod about the axis of rotatiod & is the spring constant.
The stable position, the right hand side of the above equdi#s to be zero. Hence the positions
can be found from

= —ra + PLsina, 3)

ka — PLsina = 0, 4)
or equivalently,

%a — sina = 0. (5)
We defines; = k. It can be shown that, besides= 0, this equation always has a pair of non-zero
solution fora whenk < 1. However, fork > 1, we havea = 0 as the only solution. Note that
can be reduced by simply increasing the Idad_et us increase the load such that it is just above
P. = k/L. Now for this, sinces is only a little less than one, we expect that non-trivialsiohs of
a will be close to zero. Hence the tewina can be expanded in powersafThis leads to

a3

_(l_l%)(H_E =0, (6)

where we have neglected the heigher powers.oThis leads to the solution. = ++/6(1 — i)
besides the trivial one = 0. We now note the similarity between equation (1) and (6). fidte

!There are many other mechanical models which show similar bifurcasersor example [2, 3].
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Figure 2. V(a, ) for differnt values ofz. While the solid line is for the critical
values ofi, namelyk = 1, representing® = P,, the dotted and dashed curves are for
% = 1.05 and.95 respectively. Fok > 1, a = 0 is the minimum of the potential, This
reperesents that the inverted pendulum is sitting staright making an angleite the
verical axis. & > 1, minima are ata = a+. The pendulum settles at one of these
angles, breaking — —a symmetry. We refer to this as a symmetry broken phase.

of X\ is played by6(1 — %) and the role ofr is played bya. Consequently, our model is a case
of supercritical bifurcation. One can construct a potémtiaose extremaization gives (5). This is
given by
ka?
V(a,k) = | da(ka — sina) = - + cosa. @

The plot of the potential for different values &fis shown in figure (2). The stability of the system
is decided from the minima of the potential and has been digliin the caption of figure (2). In
the next section we discuss some dynamical issues assbeiltethe model.

3. TIME DEPENDENT INTERPOLATING SOLUTION

As we discussed in the previous section,Aar 1 or in other words foiP? < P,., the stable position
isa =0andfork < 1orfor P > P., a =0isamaximum and system settles down to either,at
or ata_. The question that we ask in this section is the followingpi&se we suddenly reduce the
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load fromP > P, to just belowP,, how the system rolls down from the symmetry preserving @has
to the symmetry broken one? To analyze this issue in somé,detago back to equation (5). First
we note that this equation can be re-written as

)2 + ka? + 2PL

d da
—(1(=
dt( (dt
Note that the experssion inside the big brackets is the &staigy of the system. Hence (8) is a
statement of energy conservation. A simple integratiorfoleegives

cosa) =0, (8)

da 2PL
(= 2 2
( o ) + Kka” + 7
whereC'is a constant. This constants can be fixed by using the boyindadition that whem = 0,
a = 0. This leads to
2PL
C = —~ (10)

Substituting this back to (9) and integrating once more, &te g

cosa = C, 9)

/dt:i\/%/L. (11)
,/4sin2% — Ra?
It turns out that this integral can only be performed exasthalla. This is only a good approxi-

mation wher# is close to one, or equivalentlyy close toP.. Keeping upto quartic terms im, we
get,

I
/dt: i,/ﬁ/ da . (12)
V(1= R)a? — &
This equation can be integrated easily with the result
a(f, &) = apeTVI-RI-to), (13)

In the above equation, we have defiredt /£X¢, 1, is an integration constant. In writing down

the solution, we also used the fact that at 7, a(f) = a. Note that above solution is real only for
% < 1. This indicates the fact that rolling down solution doeseast forz > 1. We also note that
the constant, appears due to the time translational invariance of theteaqu¢s). The interpolating
solution is plotted in figure (3).

Having analysed the time dependent solution, we now turatiention to some equilibrium prop-
erties of our model. In particular, we would be interestetrimging out some analogies between
continuous phase trantion and our model of inverted pemaulu

In the next section, we discuss various static propertiesuoimodel and we try argue that our
model serves as a crude analogy with second order phasgitnans
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Figure 3. The interpolating solution(, &) = a eV ~*(~%) for & = .9 andf, = 0.
At very early time the system is at= 0, while att = 0, it reaches a finite value far.

4. ANALOGY WITH CONTINUOUS PHASE TRANSITION

Let us note that for very small (that is for P close toP,), we can expand the potential in (7) as
2 4

_ k2 _e e
V(a) = 5a®+PL(L- 5 + 24) ¥ (14)
or as
- V—-PL a2, . a*

Depending on the value @, it shows three distinct behaviours similar as in figure (Bhe oc-
curance of only even powers is a consequence ef —a symmetry of the potential. We would
like to compare (15) with the expansion of free energy fuorctn terms of order parameter near the
vecinity of second order phase transition within the framewof the Landau theory of phase tran-
sition [4]. In Landau theory, the phase of a system is charaetd by an order parameter. This is a
measurable quantity. It is generally zero in the disorderdugh temperature phase and acquires a
non-zero value in the ordered or the low temperature phasernfnon example is the ferromanget.
In the absence of any external field, the magnetization ofrarfgagnet is zero above a critical tem-
peraturel,.. However, forl’ < T, its magnetization is non-zero. Therefore, here, magaitiz is
generally used as the order parameter which distiguisteehigih and low temperature phases of a
ferromagnet.
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When a parameter of the system changes, a system may go traqugse transition. For the
case just discussed, this parameter is the temperatureingdairphase transition process, order
parameter changes either continuously or abruptly. Whilaffirst order transition, the change of
the order parameter is disconinuous, for a second ordesiti@m it changes smoothly arourd.
Ferromagnetic transition is an example of a second ordesegptnansition.

To describe a second order phase transition, Landau cotestra free energy function of a system
near its critical point. This function, for a ferromagnedicstem, has a general form

F(M,T) = a(T — T,)M? + asM* + ..., (16)

where, M, the oder parameter, is the avarage magnetizatidm.note that sincdd — —M is
expected to be a symmetry of the system, all odd powerd aGfre absent. Secondly, considering
the system close to the critical temperature, we neglettdnigowers of\/. The equilibrium state
of the system is determined by the extimization condition,

or

CiTA
Note that the above equation tells us that for> T, the only real solution fot/ is M = 0.
However, forT" < T, two more real solution develops:

7

ay (TC — T)
2&4

M=+ , (18)

besidesM = 0. Taking a second derivative ofi, one realizes that (18) represents the stable
points, while the solutiod/ = 0 becomes unstable. From here we see that that the order garame
becomes nonzero and grows (& — 7)'/2 for temperature below.. This leads to a critical
exponents, characterising the phase transition, defined as

M~ (T, —T)". (19)

We getg = 1/2 for the system in consideration. Similarly, we can definesptbility as

2
X' = (%)T,M—»O. (20)
Taking second derivative of (16) with respectib, keepingl’ constant and” > T, we get
X'~ (T-Te) (21)
and forT < T,
X '~ (T.—-T). (22)

These lead to two other critical exponents

v=9"=1L (23)

Now we turn our attention to the model we are discussing. Weadhe following similarities
with ferromagnets.
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e F'is similar toV in (15).
e Like M in ferromagnetg behaves as order parameter in our model.
e The loadP behaves as temperature which we tune externally.
e The critical temperatur@, is similar to the critical load®..

e It can easily be checked that the order parameter in our ase/bs near the critical point as

a~(P—-P)3, (24)
giving 5 = 1/2.
¢ Likewise the susceptibility, defined as

X = <({§(L‘2/>T,a—>0. =
leads to

x '~ (P-P.), for P>P, (26)
and

x !~ (P.—P), for P<P,. 27)

Hence, we get

vy=~" =1 (28)

Though there are quite a few similarities between our maagfarromagnets, there are many dif-
ferences also. To mention a few, we note that unlike our dagemagnetic transition is temperature
driven. Morover,M is a local order parameter for ferromagnets. This meansithatay change
from point to point inside a ferromagnetic material. For oase is only a global parameter.

5. CONCLUSION

In this work, we discussed a simple model showing supetatibifurcation. We constructed a time
dependent solution interpolating the symmetric phase bacsymmetry broken phase. We also
tried to bring out some similarities between our model amtbfeagnetic material near its critical
temperature using Landau theory.

It would be interesting to set up an experiment to test owltesHowever, before we do so, the
model has to be generalised to take care of other effecttly-ive have to do the analysis including
the weight of the rod. Secondly, we need to include frictioto ithe system by introducing a term
(Ba into the equation (5). We hope to look into these areas inuheed.

78 Prayas Val. 4, No. 2, Apr. - Jun. 2010



Supercritical bifurcation ......

Acknowledgements

I would like to thank Sudipta Mukher;ji for supervising thisuk. | would also like to thank Anirban
Basu and S.K. Patra for their help during the Summer Studesiting Programme at Institute of
Physics, Bhubaneswar.

References

[1] J.P. Sharpe and N. Sunger, Supercritical bifurcation in a simpleharécal system: An undergraduate
experiment, Am. J. Phys 78 (5), 520, 2010.

[2] P. K. Aravind, A simple model of spontaneous symmetry breakdug, J. Phys 55 (5), 437, 1987.
[3] G. Fletcher, A mechanical analog of first- and second-ordes@hansition, Am. J. Phys 65 (1), 74, 1997.

[4] H. B. Callen, Thermodynamics and an introduction to thermostatistiespr® Edition, John Wiely and
Sons.

Prayas Vol. 4, No. 2, Apr. - Jun. 2010 79



