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Abstract. We consider a simple mechanical model which exhibits supercritical pitchfork bifurcation. We
further discuss symmetry preserving and symmetry broken phases of the model. An analytical time dependent
solution is then constructed which interpolates between these two phases. Wealso discuss the similarities of
our model with coninuous phase transition. We argue that an analogue ofcritical exponents in our model can
be constructed via a suitable Landau like expansion of the potential.
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1. INTRODUCTION

Bifurcation theory explains many natural phenomena. The purpose of this project is to analyse a
simple mechanical model which exhibits supercritical bifurcation. It also shares some features of
symmetry breaking and continuous phase transition.

The phenomena of bifurcation has one common cause: a specificphysical parameter crosses
a threshold and consequently it forces the system to organize itself to a new state. This specific
state differs significantly from the original one. The states of a system generally correspond to the
solutions of a nonlinear equation. A state can be observed ifit is stable. However, if that state loses
its stability when a parameter reaches a critical value, then the state is not observed. The system
then generally organizes itself to a new stable state – causing a bifurcation from the original one.

A simple example of bifurcation is known as pitchfork bifurcation. Here the solution of the
nonlinear equation bifurcates in pairs and generally the bifurcating state has less symmetry than the
original one – often called a symmetry broken state. The simplest of such example is described by
the solutions of the following equation:

x3 − λx = 0, (1)

whereλ is a parameter andx is real. Foλ ≤ 0, there is only one solutionx = 0. However, forλ > 0,
two new solutions appear atx = ±

√
λ. It is possible to construct a ‘potential’ whose extrimization
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Figure 1. Solutions bifurcate in pairs whenλ becomes positive

gives (1)

V (x, λ) =

∫

(x3 − λx)dx =
1

4
(x4 − 2λx2). (2)

Note thatV is symmetric underx → −x. From the structure of the potential, one immediately
realises that forλ < 0, V minimizes atx = 0. We call this a symmetric phase. However, this
ground state becomes unstable whenλ > 0 and two new minima appear at non-zero values ofx

symmetrically aroundx = 0 line. As soon as the system reaches one of this states, thex → −x

symmetry gets broken. We call this a symmetry broken phase.
Our purpose is now to introduce a mechanical model which shows such bifurcation. This is

what we do in the next section. Subsequently, we study time dependent solutions associated with
the crossover from symmetric phase to the symmetry broken phase. We then study as to how our
model brings out a simple analogy with second order phase transition. Second order phase transition
appears in many thermodynamic systems - ferromagnetic material losing its magnetization with the
increase of temperatue is one such example. We end our project with a discussion of our results.

2. THE MODEL

The system is an inverted pendulum where a rigid rod of negligible mass is pivoted about its lower
end with a torsion spring [1]. This spring provides the restoring torque proportional to the angular
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displacement from the equilibrium1. See the figure for the details of the system.

b
b

L

a

P

A load of weightP is applied vertically on the top of the rod. The equation of motion that this rod
of lengthL has to satisfy can be found from torque ballance equation. This is given by

I
d2a

dt2
= −κa + PLsina, (3)

whereI is the moment of inertia of the rod about the axis of rotation and κ is the spring constant.
The stable position, the right hand side of the above equation has to be zero. Hence the positions
can be found from

κa − PLsina = 0, (4)

or equivalently,

κ

PL
a − sina = 0. (5)

We define κ
PL = κ̃. It can be shown that, besidesa = 0, this equation always has a pair of non-zero

solution fora whenκ̃ < 1. However, forκ̃ > 1, we havea = 0 as the only solution. Note that̃κ
can be reduced by simply increasing the loadP . Let us increase the loadP such that it is just above
Pc = κ/L. Now for this, sincẽκ is only a little less than one, we expect that non-trivial solutions of
a will be close to zero. Hence the termsina can be expanded in powers ofa. This leads to

−(1 − κ̃)a +
a3

6
= 0, (6)

where we have neglected the heigher powers ofa. This leads to the solutiona± = ±
√

6(1 − κ̃)

besides the trivial onea = 0. We now note the similarity between equation (1) and (6). Therole

1There are many other mechanical models which show similar bifurcations, see for example [2,3].
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Figure 2. V (a, κ̃) for differnt values ofκ̃. While the solid line is for the critical

values ofκ̃, namelyκ̃ = 1, representingP = Pc, the dotted and dashed curves are for

κ̃ = 1.05 and.95 respectively. For̃κ > 1, a = 0 is the minimum of the potential, This

reperesents that the inverted pendulum is sitting staright making an angle zero with the

verical axis. κ̃ > 1, minima are ata = a±. The pendulum settles at one of these

angles, breakinga → −a symmetry. We refer to this as a symmetry broken phase.

of λ is played by6(1 − κ̃) and the role ofx is played bya. Consequently, our model is a case
of supercritical bifurcation. One can construct a potential whose extremaization gives (5). This is
given by

V (a, κ̃) =

∫

da(κ̃a − sina) =
κ̃a2

2
+ cosa. (7)

The plot of the potential for different values ofκ̃ is shown in figure (2). The stability of the system
is decided from the minima of the potential and has been discussed in the caption of figure (2). In
the next section we discuss some dynamical issues associated with the model.

3. TIME DEPENDENT INTERPOLATING SOLUTION

As we discussed in the previous section, forκ̃ > 1 or in other words forP < Pc, the stable position
is a = 0 and forκ̃ < 1 or for P > Pc, a = 0 is a maximum and system settles down to either ata+

or ata−. The question that we ask in this section is the following: Suppose we suddenly reduce the
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load fromP > Pc to just belowPc, how the system rolls down from the symmetry preserving phase
to the symmetry broken one? To analyze this issue in some detail, we go back to equation (5). First
we note that this equation can be re-written as

d

dt

(

I(
da

dt
)2 + κa2 +

2PL

I
cosa

)

= 0, (8)

Note that the experssion inside the big brackets is the totalenergy of the system. Hence (8) is a
statement of energy conservation. A simple integration therfoe gives

I(
da

dt
)2 + κa2 +

2PL

I
cosa = C, (9)

whereC is a constant. This constants can be fixed by using the boundary condition that whena = 0,
ȧ = 0. This leads to

C =
2PL

I
. (10)

Substituting this back to (9) and integrating once more, we get

∫

dt = ±
√

I

PL

∫

da
√

4sin2 a
2 − κ̃a2

. (11)

It turns out that this integral can only be performed exactlysmalla. This is only a good approxi-
mation wheñκ is close to one, or equivalentlyP close toPc. Keeping upto quartic terms ina, we
get,

∫

dt = ±
√

I

PL

∫

da
√

(1 − κ̃)a2 − a4

12

. (12)

This equation can be integrated easily with the result

a(t̃, κ̃) = a±e∓
√

1−κ̃(t̃−t̃0). (13)

In the above equation, we have definedt̃ =
√

PL
I t, t̃0 is an integration constant. In writing down

the solution, we also used the fact that att̃ = t̃0 a(t̃) = a±. Note that above solution is real only for
κ̃ < 1. This indicates the fact that rolling down solution does notexist for κ̃ > 1. We also note that
the constant̃t0 appears due to the time translational invariance of the equation (5). The interpolating
solution is plotted in figure (3).

Having analysed the time dependent solution, we now turn ourattention to some equilibrium prop-
erties of our model. In particular, we would be interested inbringing out some analogies between
continuous phase trantion and our model of inverted pendulum.

In the next section, we discuss various static properties ofour model and we try argue that our
model serves as a crude analogy with second order phase transition.
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Figure 3. The interpolating solutiona(t̃, κ̃) = a+e
√

1−κ̃(t̃−t̃0) for κ̃ = .9 andt̃0 = 0.

At very early time the system is ata = 0, while att̃ = 0, it reaches a finite value fora.

4. ANALOGY WITH CONTINUOUS PHASE TRANSITION

Let us note that for very smalla (that is forP close toPc), we can expand the potential in (7) as

V (a) =
κ

2
a2 + PL

(

1 −
a2

2
+

a4

24

)

+ ... (14)

or as

Ṽ (a, κ̃) =
V − PL

PL
=

a2

2
(κ̃ − 1) +

a4

24
+ ... (15)

Depending on the value of̃κ, it shows three distinct behaviours similar as in figure (2).The oc-
curance of only even powers is a consequence ofa → −a symmetry of the potential. We would
like to compare (15) with the expansion of free energy function in terms of order parameter near the
vecinity of second order phase transition within the framework of the Landau theory of phase tran-
sition [4]. In Landau theory, the phase of a system is characterized by an order parameter. This is a
measurable quantity. It is generally zero in the disorderedor high temperature phase and acquires a
non-zero value in the ordered or the low temperature phase. Acommon example is the ferromanget.
In the absence of any external field, the magnetization of a ferromagnet is zero above a critical tem-
peratureTc. However, forT < Tc, its magnetization is non-zero. Therefore, here, magnetization is
generally used as the order parameter which distiguishes the high and low temperature phases of a
ferromagnet.
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When a parameter of the system changes, a system may go througha phase transition. For the
case just discussed, this parameter is the temperature. During a phase transition process, order
parameter changes either continuously or abruptly. While for a first order transition, the change of
the order parameter is disconinuous, for a second order transition, it changes smoothly aroundTc.
Ferromagnetic transition is an example of a second order phase transition.

To describe a second order phase transition, Landau constructed a free energy function of a system
near its critical point. This function, for a ferromagneticsystem, has a general form

F (M,T ) = a1(T − Tc)M
2 + a4M

4 + ..., (16)

where, M, the oder parameter, is the avarage magnetization.We note that sinceM → −M is
expected to be a symmetry of the system, all odd powers ofM are absent. Secondly, considering
the system close to the critical temperature, we neglect higher powers ofM . The equilibrium state
of the system is determined by the extimization condition,

∂F

∂M
= 0. (17)

Note that the above equation tells us that forT > Tc, the only real solution forM is M = 0.
However, forT < Tc two more real solution develops:

M = ±

√

a1(Tc − T )

2a4
, (18)

besidesM = 0. Taking a second derivative onF , one realizes that (18) represents the stable
points, while the solutionM = 0 becomes unstable. From here we see that that the order parameter
becomes nonzero and grows at(Tc − T )1/2 for temperature belowTc. This leads to a critical
exponentβ, characterising the phase transition, defined as

M ∼ (Tc − T )β . (19)

We getβ = 1/2 for the system in consideration. Similarly, we can define susceptibility as

χ−1 =
( ∂2F

∂M2

)

T,M→0
. (20)

Taking second derivative of (16) with respect toM , keepingT constant andT > Tc, we get

χ−1 ∼ (T − Tc) (21)

and forT < Tc,

χ−1 ∼ (Tc − T ). (22)

These lead to two other critical exponents

γ = γ′ = 1. (23)

Now we turn our attention to the model we are discussing. We notice the following similarities
with ferromagnets.
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• F is similar toV in (15).

• Like M in ferromagnet,a behaves as order parameter in our model.

• The loadP behaves as temperature which we tune externally.

• The critical temperatureTc is similar to the critical loadPc.

• It can easily be checked that the order parameter in our case behaves near the critical point as

a ∼ (P − Pc)
1

2 , (24)

giving β = 1/2.
• Likewise the susceptibility, defined as

χ−1 =
(∂2V

∂a2

)

T,a→0
. (25)

leads to

χ−1 ∼ (P − Pc), for P > Pc, (26)

and

χ−1 ∼ (Pc − P ), for P < Pc. (27)

Hence, we get

γ = γ′ = 1. (28)

Though there are quite a few similarities between our model and ferromagnets, there are many dif-
ferences also. To mention a few, we note that unlike our case,ferromagnetic transition is temperature
driven. Morover,M is a local order parameter for ferromagnets. This means thatM may change
from point to point inside a ferromagnetic material. For ourcase,a is only a global parameter.

5. CONCLUSION

In this work, we discussed a simple model showing supercritical bifurcation. We constructed a time
dependent solution interpolating the symmetric phase and the symmetry broken phase. We also
tried to bring out some similarities between our model and ferromagnetic material near its critical
temperature using Landau theory.

It would be interesting to set up an experiment to test our results. However, before we do so, the
model has to be generalised to take care of other effects. Firstly, we have to do the analysis including
the weight of the rod. Secondly, we need to include friction into the system by introducing a term
βȧ into the equation (5). We hope to look into these areas in the future.
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