
P R A Y A S c© Indian Association of Physics Teachers
Students’ Journal
of Physics

Interpolating solution in a mechanical model under quench
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Abstract. We review a mechanical model which has qualitative similarities with ferromagnetic material in a magnetic
field. We then study certain time dependent classical solutions of this model when it is appropriately quenched.
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1. INTRODUCTION

Simple mechanical models often provide insights into complicated physical processes in nature. Consider, for
example, phase transition of ferromagnets above the Curie temperature. Below the Curie temperature, within
the material, neighbouring magnetic spins are aligned parallel. As we increase the temperature towards the
Curie point, the alignment (magnetization) within each domain decreases. Above the Curie temperature, the
local magnetic dipoles are randomly oriented and thereforethe material behaves as a paramagnet. Theoretical
understanding of this phenomenon, including the system’s behaviour at the Curie point requires the use of
sophisticated techniques of field theory and renormalization group. One may inquire if there exists simple
models which capture, at-least qualitatively, some essential features of this transition.

Indeed in [1], such a model was analyzed. It consists of a beadof massm moving freely along a vertical
loop. The loop is then made to rotate about a vertical axis passing through its center. It can be shown that if
the loop rotates with a very small angular velocityω, the bead stays at the bottom of the loop. However, as the
angular velocity is increased, beyond a critical velocityωc, minimization of the potential energy requires the
bead to sit at a non-zeroθ (θ is shown in the figure). As we further increaseω, θ increases, reachingπ/2 with
ω → ∞. Note that the symmetryθ → −θ, which was present initially, is spontaneously broken forω > ωc

by the equilibrium position of the bead. Similarities with ferromagnetic transition is now immediate. While
the role of the temperature is played by the angular velocityω, the position of the beadθ behaves similar to
the order parameter, magnetization. Hence, the paramagnetic phase is analogous to theω < ωc phase of the
model. In literature this phenomena is known as a bifurcation. When a specific physical parameter crosses
a threshold value, the system generally organizes itself toa new stable state causing a bifurcation from the
original one.

What happens in ferromagnetic material if we quench the temperature from a low value to a value above
the Curie temperature? Since temperature is tuned very fast, immediately after the quench, the system will
still be in its unstable ferromagnetic state. However, slowly with time, the system will roll down to the stable
paramagnetic state. We can ask similar question within the model we are discussing. Suppose we quench the
angular velocity from a very low value to a higher one (> ωc), we should be able to find a time-dependent
rolling down solution which will interpolate betweenθ = 0 and aθ non-zero value. Indeed in [2], such a
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Figure 1. A vertical loop carrying a movable friction-lees bead is rotating about an

off-center vertical axis, at a distanceA from the center, with a constant frequencyω.

The positive values ofA andθ are shown by the horizontal axis at the bottom.

solution was explicitly constructed.
In this paper, we discuss the same model when it is rotated about a vertical axis whichdoes notpass

through the center. This is explicitly shown in figure (1). Asanalyzed in [1], this model depicts some features
of ferromagnetic material in an external magnetic field. Here, for the ferromagnet, the rotational symmetry
is broken by external field itself. Similarly, by choosing off-center axis of rotation, we break theθ → −θ

symmetry in our model right from the beginning. We will describe the model in brief in the next section.
Our primary aim of this work is to construct explicit rollingdown solution as we suddenly shift the axis of
rotation of the loop parallely. This is what we discuss in thethird section. The last section summarizes the
results.

2. THE LAGRANGIAN AND THE EQUATION OF MOTION

As discussed in [1], the model has an effective Lagrangian description. Let us assume that at any instant of
time the mass is at a positionθ(t) The Lagrangian then reads [1]

L = kinetic energy − potential energy. (1)

While the kinetic energy is given by

KE =
1

2
mR2θ̇2 +

1

2
mω2(Rsin2 θ + A)2, (2)
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the potential energy is

PE = −mgR cos θ. (3)

Therefore the total Lagrangian is

L =
1

2
mR2θ̇2 +

1

2
mω2(Rsin2 θ + A)2 + mgR cos θ. (4)

This allows us to have a description of the system in terms of an effectivepotential

V ′ = −
1

2
mω2(Rsin2 θ + A)2 − mgR cos θ. (5)

Or, in other words, we can study the equilibrium position of the bead by analyzing the minima of the potential

V =
V ′

mgR
= −cosθ −

1

2
(sinθ + α)2, (6)

where we have defined

α =
A

R
, and β =

ω2R

g
. (7)

Note that, because of the presence ofα, the potential does not have aθ → −θ symmetry.
In the following, we will study the effective potential in the rangeβ > 1 and for all positiveα. Notice that,

for α = 0, it has a maximum atθ = 0 with two symmetric minima at

θ0 = ± cos−1(1/β). (8)

Let the bead be in one of the degenerate minima. We choose the negative one. Now we increaseα. This
means that, in figure (1), we move the axis of rotation to the right. For very largeα, we can neglect thesinθ

term in the potential. It then easily follows that there is only one minimum at approximately

θ = tan−1(βα) (9)

So at this highα, the bead must be resting at a positiveθ value. To find at what value ofα, the transition
from negative to positiveθ occurred, it is instructive to search if there is an inflection point associated with
the effective potential. Indeed there is one and that can be found by setting first and secondθ derivative to
zero. It occurs at

α = αc = (1 − β−2/3)3/2, cosθc =
1

β1/3
(10)

The dependence of equilibrium angle on alpha is shown in Fig (refdiagram1) by a bifurcation diagram [4].
Further, the behaviour of the potential is shown in figure (3).

Now we would like to address the following question. Suppose, for a fixedβ, we suddenly changeα from
a value less thenαc to a value greater thanαc, how is the bead going to relax from a wrong ground state
(at negativeθ) to the right one (in positiveθ)? To address this question, we need to find out a rolling down
solution ofθ as a function oftime. We address this issue in the next section.
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Figure 2. Bifurcation Diagram for the model. The dotted lines show thepoints of

unstable equilibrium; whereas the solid lines represent points of stable equilibrium. As

soon asα is slightly decreased from the maximum (call itαc) – which is the transition

point with saddle-point bifurcation –, the particle sitting on the left false vacua, should

slip down to the true vacuum at the right.

3. INTERPOLATING SOLUTION

We start with by writing down the Euler-Lagrange equation that follows from (4). This is given by

d2θ

dt2
− ω2 sinθ cosθ −

ω2A

R
cosθ +

g

R
sinθ = 0 (11)

By definingt̃ = ωt, we can re-write the equation as

d2θ

dt̃2
− sinθ cosθ − α cosθ +

1

β
sinθ = 0. (12)

Integrating this equation once, we get

1

2

(dθ

dt̃

)2

+
1

4
cos2θ − α sinθ −

1

β
cosθ = c, (13)

where, c is an integration constant to be determined by the boundary condition. Note that the above equation
is just a statement of energy conservation.

To this end, let us consider the following situation. Suppose we start withα = 0 andβ > 1. The particle
is sitting in one of the degenerate minima given by

θ+ = cos−1

( 1

β

)

, or θ− = 2π − cos−1

( 1

β

)

. (14)

Let us take the second one. Now we suddenly increaseα to a value greater thanαc. Sinceθ− is no longer
a minimum of the effective potential, particle is expected to roll down from its unstable position with zero
initial velocity. This condition allow us to fix the constantappearing in (13).

dθ

dt̃
= 0, at θ = θ−, (15)

With this value of the constant, one can search for a time dependent solution forθ simply by integrating (13).
This exercise can be performed exactly, but the solution is abit messy. We rather illustrate here with specific
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Figure 3. Effective potential for fixedβ = 3 and for various α. For

α = 0 (dashed line), there are degenerate minima. The solid line is for

α = αc = (1 − β−2/3)3/2 = .374 which shows the inflection point arising from

the left minimum. Forα = .5, single minimum is shown by the dotted line.

values ofβ andα. Let us chooseβ = 3. Using (10), we getαc = .3742. We therefore takeα = .375. With
this the boundary condition can be solved to getc = 0.0472. Now the equation (13) can be re-written as

∫

dθ
√

2α sinθ + 2/β cosθ − cos2θ/2 + 2 × .0472
= ±

∫

dt̃. (16)

The integral on the left hand side of (16) can be solved. However, the result is not very illuminating. We
instead represent the solution graphically. This is shown in figure (4).

4. SUMMARY

To conclude, in this paper, we reviewed a toy model which captures certain qualitative behaviour of a fer-
romagnet as we tune its temperature in the presence of an external magnetic filed. We then constructed a
time-dependent classical solution representing its relaxation from false to a true ground state after the model
is appropriately quenched.
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Figure 4. Behaviour ofθ(t̃) with t̃ for α = .375 whereαc = .3742. We have set

β = 3. The figure, which would correspond to a bounced like solution in Euclidean

time, is seen as an interpolating one in real time.
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