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I nter polating solution in a mechanical model under quench
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Abstract. We review a mechanical model which has qualitative sintiEgiwith ferromagnetic material in a magnetic
field. We then study certain time dependent classical swiatof this model when it is appropriately quenched.
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1. INTRODUCTION

Simple mechanical models often provide insights into cacapdd physical processes in nature. Consider, for
example, phase transition of ferromagnets above the Gamripérature. Below the Curie temperature, within
the material, neighbouring magnetic spins are alignedlleards we increase the temperature towards the
Curie point, the alignment (magnetization) within each dondecreases. Above the Curie temperature, the
local magnetic dipoles are randomly oriented and therdéferenaterial behaves as a paramagnet. Theoretical
understanding of this phenomenon, including the systeefsmbiour at the Curie point requires the use of
sophisticated techniques of field theory and renormabémagroup. One may inquire if there exists simple
models which capture, at-least qualitatively, some egsldattures of this transition.

Indeed in [1], such a model was analyzed. It consists of a béathssm moving freely along a vertical
loop. The loop is then made to rotate about a vertical axisipgghrough its center. It can be shown that if
the loop rotates with a very small angular velocitythe bead stays at the bottom of the loop. However, as the
angular velocity is increased, beyond a critical velocity minimization of the potential energy requires the
bead to sit at a non-zeto(d is shown in the figure). As we further increasef increases, reaching/2 with
w — oo. Note that the symmetry — —60, which was present initially, is spontaneously brokendor w,.
by the equilibrium position of the bead. Similarities witrfomagnetic transition is now immediate. While
the role of the temperature is played by the angular velegithe position of the beal behaves similar to
the order parameter, magnetization. Hence, the paramaghetse is analogous to the< w. phase of the
model. In literature this phenomena is known as a bifurcatiWhen a specific physical parameter crosses
a threshold value, the system generally organizes itselfiew stable state causing a bifurcation from the
original one.

What happens in ferromagnetic material if we quench the &atpre from a low value to a value above
the Curie temperature? Since temperature is tuned veryifiastediately after the quench, the system will
still be in its unstable ferromagnetic state. However, $jomith time, the system will roll down to the stable
paramagnetic state. We can ask similar question within theeiwe are discussing. Suppose we quench the
angular velocity from a very low value to a higher one ¢.), we should be able to find a time-dependent
rolling down solution which will interpolate betweeéh= 0 and af non-zero value. Indeed in [2], such a
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Figure 1. A vertical loop carrying a movable friction-lees bead isatotg about an
off-center vertical axis, at a distancefrom the center, with a constant frequency
The positive values off andf are shown by the horizontal axis at the bottom.

solution was explicitly constructed.

In this paper, we discuss the same model when it is rotatedtabweertical axis whictdoes notpass
through the center. This is explicitly shown in figure (1). &salyzed in [1], this model depicts some features
of ferromagnetic material in an external magnetic field. é{éor the ferromagnet, the rotational symmetry
is broken by external field itself. Similarly, by choosing-oénter axis of rotation, we break tide— —6
symmetry in our model right from the beginning. We will daéberthe model in brief in the next section.
Our primary aim of this work is to construct explicit rollimbpwn solution as we suddenly shift the axis of
rotation of the loop parallely. This is what we discuss in tiied section. The last section summarizes the
results.

2. THE LAGRANGIAN AND THE EQUATION OF MOTION

As discussed in [1], the model has an effective Lagrangiacrijgtion. Let us assume that at any instant of
time the mass is at a positiétit) The Lagrangian then reads [1]

L = kinetic energy — potential energy. (1)

While the kinetic energy is given by

1 . 1
KE = §mR202 + §mw2(Rsin2 6+ A)?, (2)

2 Prayas ??,??



Interpolating solution ......

the potential energy is

PE = —mgRcos#. 3)
Therefore the total Lagrangian is

L= %mRQQQ + %moJQ(Rsin2 0+ A)?> + mgRcosf. 4)
This allows us to have a description of the system in termsi@ffectivepotential

V' = —%mw2 (Rsin?@ + A)? — mgR cosf. (5)
Or, in other words, we can study the equilibrium positionhaf bead by analyzing the minima of the potential

v/

1 ,
V= mgR —cosf — 5(51119 + a)“, (6)

where we have defined

A ’R
a=z and 52%. @)
Note that, because of the presencecpthe potential does not haveéda— —60 symmetry.
In the following, we will study the effective potential inglvanges > 1 and for all positivex. Notice that,

for a = 0, it has a maximum at = 0 with two symmetric minima at
0o = + cos™ (1/0). (8)

Let the bead be in one of the degenerate minima. We choosestfeive one. Now we increase This
means that, in figure (1), we move the axis of rotation to thbtriFor very largey, we can neglect theind
term in the potential. It then easily follows that there idyazne minimum at approximately

0 = tan™'(Ba) 9

So at this highn, the bead must be resting at a positivealue. To find at what value af, the transition

from negative to positivé occurred, it is instructive to search if there is an inflegtpmint associated with
the effective potential. Indeed there is one and that carobed by setting first and secoddlerivative to

zero. It occurs at

a=a.=(1- 5*2/3)3/2, cost, = (10)

1
B3
The dependence of equilibrium angle on alpha is shown in ffgfgliggram1) by a bifurcation diagram [4].
Further, the behaviour of the potential is shown in figure (3)

Now we would like to address the following question. Suppésea fixeds, we suddenly change from
a value less then, to a value greater tham., how is the bead going to relax from a wrong ground state
(at negative) to the right one (in positivd)? To address this question, we need to find out a rolling down
solution off as a function ofime. We address this issue in the next section.
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Figure 2. Bifurcation Diagram for the model. The dotted lines show ploints of
unstable equilibrium; whereas the solid lines represeintpof stable equilibrium. As
soon asy is slightly decreased from the maximum (calbit) — which is the transition
point with saddle-point bifurcation —, the particle sigion the left false vacua, should
slip down to the true vacuum at the right.

3. INTERPOLATING SOLUTION

We start with by writing down the Euler-Lagrange equatioat flollows from (4). This is given by

d%0 2A

el w? sinf cosf — % cosf + % sinf =0 (11)
By definingt = wt, we can re-write the equation as

d*6 1

o sinf cosf — « cosl + B sinf = 0. (12)
Integrating this equation once, we get

1/doN2 1 . 1

3 (E) + 1 cos26 — o sinf — B cosf = ¢, (13)

where, c is an integration constant to be determined by thadery condition. Note that the above equation
is just a statement of energy conservation.

To this end, let us consider the following situation. Suggpes start withe = 0 andg > 1. The particle
is sitting in one of the degenerate minima given by

6, =cos™! (%), or §_ =21 — cos™! (%) (14)

Let us take the second one. Now we suddenly increagea value greater tham,.. Sinced_ is no longer
a minimum of the effective potential, particle is expecteddll down from its unstable position with zero

initial velocity. This condition allow us to fix the constaagppearing in (13).
do
— =0, atd=0_, (15)
dt

With this value of the constant, one can search for a timemntigret solution fof simply by integrating (13).
This exercise can be performed exactly, but the solutiorbis messy. We rather illustrate here with specific
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Figure 3. Effective potential for fixedd = 3 and for variousa. For
a = 0 (dashed line), there are degenerate minima. The solid kndoi

a = a. = (1 — 872332 = 374 which shows the inflection point arising from
the left minimum. Forx = .5, single minimum is shown by the dotted line.

values of3 anda. Let us choose& = 3. Using (10), we getr. = .3742. We therefore take: = .375. With
this the boundary condition can be solved to get 0.0472. Now the equation (13) can be re-written as

/ 40 =4 / dt. (16)
V2asing +2/3 cos — cos260/2 + 2 x .0472

The integral on the left hand side of (16) can be solved. Hewdlie result is not very illuminating. We
instead represent the solution graphically. This is showfigure (4).

4. SUMMARY
To conclude, in this paper, we reviewed a toy model whichwast certain qualitative behaviour of a fer-
romagnet as we tune its temperature in the presence of amakteagnetic filed. We then constructed a

time-dependent classical solution representing its e¢lar from false to a true ground state after the model
is appropriately quenched.
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Figure 4. Behaviour off(#) with ¢ for « = .375 wherea. = .3742. We have set
B = 3. The figure, which would correspond to a bounced like sotutioEuclidean

time, is seen as an interpolating one in real time.
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