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Abstract. In this paper, we compute the ground state wave function and the ground state energy of a spin
zero massive particle in Anti de Sitter space by employing supersymmetric quantum mechanics. Though the
results were known earlier, our method is new.

Communicated by: L. Satpathy

1. INTRODUCTION

Anti de Sitter space-time is a curved space-time with a constant negative curvature. It is a solution of
Einstein equation in the presence of a negative cosmological constant. Many researchers are recently
interested in this space-time due to Maldacena’s conjecture of AdS/CFT correspondence ( see [1]).
According to this conjecture, gravitational theory in five dimensional Anti de Sitter space is dual
to a gauge theory on its boundary. In this paper, we study propagation of a free spin zero massive
particle in this space time. It satisfies Klein-Grodon equation. Though this problem was analyzed
earlier [2], we use supersymmetric quantum mechanics to find the ground state wave function and
ground state energy.

We start by reviewing the techniques of supersymmetric quantum mechanics. In section 3, we
introduce d dimensional Anti de Sitter space (AdS). As mentioned before, AdS is a space-time with
constant negative curvature. In section 4, we discuss how SUSY can be used to compute ground
state wave function and ground state energy of a massive spin zero particle in AdS space. We hope
to report on the complete spectrum and energy eigenvalues in the future.

2. HAMILTONIAN FORMULATION OF SUSY QUANTUM MECHANICS

In this section, we briefly introduce SUSY quantum mechanics. We start by considering a single
particle of mass m, moving in a potential V1(x). As usually done in SUSY quantum mechanics,
choose the ground state energy to be zero (by subtracting a constant). We further denote the ground
state wave function as ψ0(x). The Schrodinger equation can be written as
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H1ψ0(x) = E0ψ0(x), (1)

and

H1ψ0(x) =
−h̄2

2m
d2ψ0(x)
dx2

+ V1(x)ψ0(x) = 0. (2)

From this we get

V1(x) =
h̄2

2m
ψ′′0 (x)
ψ0(x)

. (3)

This allows us a global construction of the potential V1(x) from the knowledge of its ground state
wave function. Note now that it is very simple to factorize the hamiltonian. The hamiltonian can be
written as

H1 = A†A, (4)

where

A =
h̄√
2m

d

dx
+W (x), (5)

and

A† =
−h̄√
2m

d

dx
+W (x). (6)

Then

H1ψ(x) = A†Aψ(x), (7)

or

H1 =
−h̄2

2m
d2

dx2
+W 2(x)− h̄√

2m
W ′(x). (8)

Comparing equation (2) and equation (8) we obtain

V1(x) = W 2(x)− h̄√
2m

W ′(x). (9)

This equation is the well known Riccati equation. The quantity W (x) is generally referred to as the
‘superpotential’ in SUSY quantum mechanics. The solution for W (x) in terms of the ground state
wave function is obatained by recognising that A satisfies

Aψ0(x) = 0. (10)

This follows from the fact that the ground state energy is zero. The above equation can be written
as,
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h̄√
2m

dψ0(x)
dx

+W (x)ψ0(x) = 0. (11)

Hence

W (x) =
−h̄√
2m

ψ′0(x)
ψ0(x)

. (12)

From which it follows that

ψ0(x) = Ne−
∫ x

W (y)dy, (13)

where N is the normalisation constant.
After this brief account of SUSY quantum mechanics, in the next section, we introduce anti

de sitter space and in section-4, we use our knowledge of SUSY quantum mechanics to construct
ground state wave function and ground state energy of a massive particle in AdS space.

3. ANTI DE SITTER SPACE

A (d+ 1)-dimensional AdS space is defined as the space of constant negetive curvature which can
be embedded in a (d+ 2) dimensional Minkowski space in the following manner:

−(X0)2 − (X(d+1))2 +
d∑

i=1

(Xi)2 = −R2, (14)

whereR is releted to the curvature of the space. This is a space-time which satisfy Einstein equation
in the presence a negative cosmological constant. The value of this constant is related to R in the
above equation. The metric of d+ 2 dimensional Minkowski’s space is

(ds)2 = −(dX0)2 − (dX(d+1))
2

+
d∑

i=1

(dXi)
2
. (15)

We parametrise the Xµ’s in (15) in the following manner:

X0= Rcosh ρ cos τ

Xd+1= Rcosh ρ sin τ

Xi= Rsinh ρ Ωi (16)

Ωi
′s are the spherical coordinates on a (d− 1) dimensional unit sphere. It satisfies∑

i

Ω2
i = 1. (17)

From it, by differention, we get
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i

ΩidΩi = 0. (18)

Note that with this parametrization, the relation (14) is automatically satisfied.
Substituting (16) into (15), we get the metric on AdSd+1 as

ds2 = R2(−cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
i ). (19)

Note that τ here is periodic with period 0 ≤ τ ≤ 2π. However, we will use the universal covering
space of AdS and we will take −∞ ≤ τ ≤ ∞. Furthermore, 0 ≤ ρ in (19). To study the structure
of AdSd+1, it is convenient to introduce another coordinate θ which is related to ρ

tan θ = sinh ρ. (20)

Here 0 ≤ θ ≤ π/2. The metric then takes the form

ds2 =
R2

cos2 θ

(
− dτ2 + dθ2 + sin2 θdΩ2

)
. (21)

Hence the metric tensor gµν can be written as

gµν =

 R2

cos2θ 0 0
0 R2

cos2θ 0
0 0 R2tan2θνij

 , (22)

where νij is the metric on unit d − 1 dimensional sphere. The exact metric components of νij can
be found in books and will not be required for us. In the next section, we study a massive particle
moving in AdS space.

4. MASSIVE PARTICLE IN ADS SPACE

In curved space a spin zero particle of rest mass M satisfies Klein-Gordon equation given by

(2−M2)ψ = 0, (23)

where, 2 is laplacian in curved space and is defined as

2 =
1√
−g

∂µ

(√
−g∂µ

)
. (24)

Here, g is the determinant of the metric gµν In writing down (23), we have set h̄ = c = 1.
For the AdS metric given in the previous section,

√
−g = R(d+1)sec2θtan(d−1)θ

√
detνij. (25)

Using (25), 2 can be written as
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1√
−g

∂µ(
√
−g∂µ)= − 1

R2
cos2θ∂τ∂τ +

d− 1
R2

cotθ∂

+
1
R2

cos2θ∂θ∂θ +
1
R2

cot2θ
1√
|νij |

∂i(
√
|νij |∂i). (26)

Re-writing differently, we have,

R22 = −cos2θ∂τ∂τ + (d− 1)cotθ∂θ + cos2θ∂θ∂θ + cot2θ∇2, (27)

where we have defined

1√
|νij |

∂i(
√
|νij |∂i) = ∇2

(d−1). (28)

Hence in AdS space, the Klein-Gordon equation can be written as(
− cos2θ∂τ∂τ+(d− 1)cotθ∂θ + cos2θ∂θ∂θ

+cot2θ∇2
(d−1)

)
ψ − M̃2ψ = 0, (29)

where M̃ = MR. Let the trial wave function be

ψ = exp (−iωτ)Yl,m(Ω(d−1))χ(θ). (30)

Then the above equation becomes:(
ω2cos2θ + (d− 1)cotθ∂θ + cos2θ∂θ∂θ − l(l + d− 2)cot2θ − M̃2

)
χ(θ) = 0. (31)

where we have used

∇2Yl,m(Ωd−1) = −l(l + d− 2)Yl,m(Ωd−1). (32)

Let us now define P (θ) such that

χ(θ) = tanθ
(1−d)

2 P (θ). (33)

Hence the above equation becomes

P ′′(θ) +
(
(1− d− M̃2)sec2θ

−l(l + d− 1)cosec2θ + ω2

+
(1− d)(d− 3)

4
sec2θcosec2θ

)
P (θ) = 0. (34)

This equation can be written in the form of Schrodinger equation

−d
2P (θ)
dθ2

+ V1P (θ) = 0, (35)
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where

V1=
(
− (1− d− M̃2)− (1− d)(d− 3)

4

)
sec2θ

+
(
l(l + d− 2)− (1− d)(d− 3)

4

)
cosec2θ + ω2. (36)

To this end we use SUSY quantum mechanics and use an ansatz for the superpotential W

W = Atanθ +Bcotθ. (37)

We first would like to see if there exist A and B such that the superpotential reproduces back (36).
Note that with this choice of W ,

W 2= A2tan2θ +B2cot2θ + 2AB

= A2sec2θ −A2 +B2cosec2θ −B2 + 2AB, (38)

and

W ′ = Asec2θ −B2cosec2θ. (39)

Hence the partner potential is

V1= W 2 −W ′

= (A2 −A)sec2θ + (B2 + B)cosec2θ − (A− B)2. (40)

But since from (36)

V1=
(
− (1− d− M̃2) +

(d− 1)(d− 3)
4

)
sec2θ

+
(
l(l + d− 2) +

(d− 1)(d− 3)
4

)
cosec2θ + ω2, (41)

we get by comparing (40) and (41),

A2 −A =
(d2 − 1 + 4M̃2)

4
. (42)

From where it follows,

A =
1±

√
d2 + 4M̃2

2
. (43)

From (40) and (41), we also get,

ω2 = −(A−B)2. (44)

Hence we have
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ω = ∓(A−B). (45)

Hence there are two cases to be considered. One is ω = A− B and ω = −A+ B. The value of B
can therefore be calculated as:

B = ω +A or B = A− ω. (46)

All together now, there are four possibilites. In the following, we pair those possibilites as (A1, B1),
(A2, B2), (A3, B3) and (A4, B4). In the following, we give the expressions of all these and then
determine the relevent pair by considering boundary conditions on the wave function. Note now, for
B = A− ω

B =
1±

√
d2 + 4M̃2

2
− ω =

1
2

(
(1− 2ω)±

√
d2 + 4M̃2

)
. (47)

B1 =
1
2

(
(1− 2ω) +

√
d2 + 4M̃2

)
, A1 =

1 +
√
d2 + 4M̃2

2
. (48)

The other pair is

B2 =
1
2

(
(1− 2ω)−

√
d2 + 4M̃2

)
, A2 =

1−
√
d2 + 4M̃2

2
. (49)

Rest of the pairs can be found out noticing the possibility B = A+ ω. So

B =
1±

√
d2 + 4M̃2

2
+ ω =

1
2

(
(1 + 2ω)±

√
d2 + 4M̃2

)
(50)

B3 =
1
2

(
(1 + 2ω) +

√
d2 + 4M̃2

)
, A3 =

1 +
√
d2 + 4M̃2

2
. (51)

B4 =
1
2

(
(1− 2ω) +

√
d2 + 4M̃2

)
, A4 =

1−
√
d2 + 4M̃2

2
. (52)

All these four values of B satisfies the equation

B2 +B = l(l + d− 2) +
(d− 1)(d− 3)

4
. (53)

Now we proceed to find the ground state energy eigenvalues ω in terms of physical parameters d, M̃
and l. To this end let us consider the first pair (A1, B1) for which

B2
1 +B1=

1
4

(
1 + d2 + 4M̃2

+2
√
d2 + 4M̃2

)
+ ω2 − ω − ω

√
d2 + 4M̃2

+
1
2
1 +

√
d2 + 4M̃2 − ω

= l(l + d− 2) +
(d− 1)(d− 3)

4
. (54)
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Solving this equation we get

ω = ω1 =
1 +

√
d2 + 4M̃2

2
± l + d− 2

2
. (55)

Similarly subtituting the other three values of B, we get

ω2=
1−

√
d2 + 4M̃2

2
± l + d− 2

2

ω3=
−1−

√
d2 + 4M̃2

2
± l + d− 2

2

ω4=
−1 +

√
d2 + 4M̃2

2
± l + d− 2

2
. (56)

Using the superpotetial we can construct the ground state wave function.

P (θ) = N
(cosAθ

sinBθ

)
, (57)

where N is a normalisation constant. Hence

χ0(θ) = N
cos θ

d−1+2A
2

sin θ
d−1+2B

2

. (58)

Since we want χ0 to be non-singular between 0 ≤ θ ≤ π/2, we need to put restrictions on the
solutions. χ0(θ) is non-singular at θ = 0 when

(d− 1 + 2B)
2

< 0. (59)

This is satisfied by B1 iff

(d− 2ω +
√
d2 + 4M̃2

2
> 0 (60)

Furthermore, we note χ(θ) is non-singular at θ = π/2

(d− 1 + 2A)
2

> 0. (61)

This is satisfied if we choose A1 from all possible A’s. From this it follows that the physically
interesting wave function is:

χ0 = (cosθ)(
d+
√

d2+4M̃2
2 )(sinθ)l. (62)

The ground state wave function is

ψ0= exp(−iωτ)Y0,0(Ωd−1)χ0(θ)

= exp(−iωτ)Y0,0(Ωd−1)cosθ
d+
√

d2+M̃2
2 . (63)
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The energy is

ω= 1 +

√
d2 + 4M̃2

2
+ l +

(d− 2)
2

= 1 +

√
d2 + 4M̃2

2
+ l +

d

2
− 1

=
1
2

(
d+

√
d2 + 4M̃2

)
+ l. (64)

The ground state energy is obtained by putting l=0.

ω =
1
2

(
d+

√
d2 + 4M̃2

)
. (65)

5. CONCLUSION

Using supersymmetric quantum mechanics, we have computed the ground state wave function and
the ground state energy of a massive particle in Anti de Sitter space. Though these results were
known earlier, we believe that the use of SUSY quantum mechanics in this problem is new. We
expect to report on a more complete analysis of this problem elsewhere.
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