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Introduction

Basic notations

Basic notations:

Linear operators: A linear operator T is an operator such that

(i) the domain D(T ) of T is a vector space and the range R(T )
lies in a vector space over the same field.

(ii) for all x , y ∈ D(T ) and scalars α, β,

T (αx + βy) = αT (x) + βT (y)

For vector spaces X & Y,

L(X ,Y) ≡ {T | T is a linear mapping/operator from X to Y}
L(X ) = L(X ,X )

If X = CΛ and Y = CΓ, then L(X ,Y) is the set of all matrices
with rows indexed by Γ and columns indexed by Λ.
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Basic notations

Adjoint operator: Let T ∈ L(X ,Y). Then the adjoint operator
T ∗ of T is the operator T ∗ : Y → X such that for all x ∈ X and
y ∈ Y

〈T (x), y〉 = 〈x ,T ∗(y)〉

As a matrix, T ∗ is the conjugate transpose (or Hermitian
transpose) of T , and is often denoted T †.
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Inner product: For A,B ∈ L(X ,Y), we define the inner product
as

〈A,B〉 = Tr
(
A†B

)
Hermitian/self-adjoint operators: An operator T ∈ L(X ) is

called Hermitian/self-adjoint if T ∗ = T † = T .

We will write Herm(X ) to denote the set of all such operators of
L(X ).
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Basic notations

Positive semidefinite operators: Let T ∈Herm(X ). Then T is
said to be positive semidefinite, written

T ≥ 0 if and only if 〈T (x), x〉 ≥ 0 for all x ∈ X

That is, eigenvalues of T are nonnegative.

We denote the set of all positive semidefinite operators from
Herm(X ) by Psd(X ).

Remarks: Positive semidefinite operators having trace equal to
one are called density operators.

D(X ) = {ρ|ρ ∈ Psd(X ) & Tr(ρ) = 1}
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Basic notations

Linear mappings on operators: Let us define

T(X ,Y) ≡ {Φ| Φ : L(X )→ L(Y), a linear map}

For every Φ ∈ T(X ,Y), we define the adjoint mapping
Φ∗ ∈ T(Y,X ) to be the unique mapping that satisfies

〈Y ,Φ(X )〉 = 〈Φ∗(Y ),X 〉 for all X ∈ L(X ) & Y ∈ L(Y).

A mapping Φ ∈ T(X ,Y) is Hermiticity-preserving if Φ(X ) ∈
Herm(Y) for all X ∈ Herm(X ).
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Semidefinite Program

Semidefinite Program (SDP)

A semidefinite program (SDP) is a pair of optimization problems
(Primal & Dual), specified by a triple (Φ,A,B), where

1. Φ ∈ T(X ,Y) is a Hermiticity-preserving mapping,

2. A ∈ Herm(X ), and

3. B ∈ Herm(Y).

Then the concerning pair of optimization problems are:

Primal problem Dual problem

Maximize: 〈A,X 〉
Subject to: Φ(X ) = B

X ∈ Psd(X )

Minimize: 〈B,Y 〉
Subject to: Φ∗(Y ) ≥ A

Y ∈ Herm(Y)
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Semidefinite Program

Let α be the optimal value of the primal problem

Maximize: 〈A,X 〉
Subject to: Φ(X ) = B

X ∈ Psd(X )

α = supX∈A 〈A,X 〉; A = {X ∈ Psd(X )| Φ(X ) = B}

and β be the optimal value of the dual problem

Minimize: 〈B,Y 〉
Subject to: Φ∗(Y ) ≥ A

Y ∈ Herm(Y)

β = infY∈B〈B,Y 〉; B = {Y ∈ Herm(Y)| Φ∗(Y ) ≥ A}

Remarks: Sup/inf cannot be replaced by a maximum/minimum in
general, in some cases the optimal values will not be achieved.
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Semidefinite Program

Examples

Example 1: Let us consider,

X = Cn &Y = C,

and for any A ∈ Herm(Cn) we take Φ ≡Tr and B = 1.

Then the primal problem associated with this SDP as follows:

Maximize: 〈A,X 〉
Subject to: Φ(X ) = Tr(X ) = 1

X ∈ Psd(Cn)
⇒

Maximize: 〈A, ρ〉
Subject to: ρ ∈ D(Cn).

A =
n∑

k=1

λk | xk〉〈xk |.

Here, λ1 ≥ · · · ≥ λn are eigenvalues of A and {| x1〉, . . . , | xn〉} is
an orthonormal basis of Cn consisting of corresponding
eigenvectors.
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A =
n∑

k=1

λk | xk〉〈xk |.

For any ρ ∈ D(Cn), we have

〈A, ρ〉 =
n∑

k=1

λk〈| xk〉〈xk |, ρ〉,

The optimal value is α = λ1 (the largest eigenvalue of A).
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Semidefinite Program

Examples

Now the associate dual problem for our example
[X = Cn,Y = C,Φ ≡Tr, and B = 1] is

Minimize: 〈B,Y 〉
Subject to: Φ∗(Y ) ≥ A

Y ∈ Herm(C)
⇒

Minimize: y
Subject to: yI ≥ A

y ∈ R

If Φ ∈ T(Cn,C) defined as Φ(X ) = Tr(X ) then Φ∗ ∈ T(C,Cn)
will be

Φ∗(y) = λI,

as 〈y ,Tr(X )〉 = 〈yI,X 〉.

Then β = λ1 [Check this].

Usually α = β happens i.e., optimal value of the primal = optimal
of the dual problem.
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Semidefinite Program

Examples

Example 2: Take X = C2 = Y and define A,B ∈Herm(C2) and
the Hermiticity-preserving linear map Φ ∈ T(X ,Y) as

A =

(
−1 0
0 0

)
, B =

(
0 1
1 0

)
& Φ(X ) =

(
0 X12

X21 0

)
,

for all X ∈ L(X ). Now the primal problem is

Maximize: 〈A,X 〉
Subject to: Φ(X ) = B

X ∈ Psd(C2)
⇒

Maximize: −X11

Subject to: X12 = 1 = X21.

It holds that α = 0, but there does not exist an optimal primal
solution to this SDP.
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Semidefinite Program

Examples

The condition Φ(X ) = B implies that X takes form

X =

(
X11 1

1 X22

)
Since X ≥ 0, so we must have X11 ≥ 0 and

det(X ) = X11X22 − 1 ≥ 0.

Therefore, X11 > 0. Hence 〈A,X 〉 = −X11 < 0.

On the other hand take X =

(
1
n 1
1 n2

)
.

Then 〈A,Xn〉 = − 1
n and α ≥ − 1

n .
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Duality

Weak Duality

For a SDP specified by (Φ,A,B), the optimal primal value α and
the optimal dual value β defined as

α = sup{〈A,X 〉 : X ∈ Psd(X ),Φ(X ) = B},
β = inf{〈B,Y 〉 : Y ∈ Herm(Y),Φ∗(Y ) ≥ A}

Proposition: (Weak duality) For every SDP specified by
(Φ,A,B) it holds that α ≤ β.

Proof. Suppose X is primal feasible and Y is dual feasible then

〈A,X 〉 ≤ 〈Φ∗(Y ),X 〉 = 〈Y ,Φ(X )〉 = 〈Y ,B〉 = 〈B,Y 〉
⇒ α ≤ β
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Duality

Strong Duality

The condition α = β is known as strong duality.

Remarks: Unlike weak duality, strong duality does not hold for
every SDP, as the following example shows.

Example 3: Take X = C3,Y = C2 and define

A =

 −1 0 0
0 0 0
0 0 0

, B =

(
1 0
0 0

)

and Φ(X ) =

(
X11 + X23 + X32 0

0 X22

)
∀ X ∈ L(X )

Check that α = −1 and β = 0.
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Semidefinite Program

Duality

Slater’s Theorem

For any SDP (Φ,A,B) followings are hold

1. Let A be the set of primal feasible solutions. If A = ∅ and
there exists a Hermitian operator Y for which Φ∗(Y ) > A,
then α = β and there exists a primal feasible operator X ∈ A
for which 〈A,X 〉 = α.

2. Let B be the set of dual feasible solutions. If B = ∅ and
there exists a positive semidefinite operator X for which
Φ(X ) = B and X > 0, then α = β and there exists a dual
feasible operator Y ∈ B for which 〈B,Y 〉 = β.



Semidefinite Programming in Quantum Information Theory

Semidefinite Program

Duality

Slater’s Theorem

For any SDP (Φ,A,B) followings are hold

1. Let A be the set of primal feasible solutions. If A = ∅ and
there exists a Hermitian operator Y for which Φ∗(Y ) > A,
then α = β and there exists a primal feasible operator X ∈ A
for which 〈A,X 〉 = α.

2. Let B be the set of dual feasible solutions. If B = ∅ and
there exists a positive semidefinite operator X for which
Φ(X ) = B and X > 0, then α = β and there exists a dual
feasible operator Y ∈ B for which 〈B,Y 〉 = β.



Semidefinite Programming in Quantum Information Theory

Semidefinite Program

Alternate form of SDP

Alternate form of SDP

What is the dual problem of the following primal problem?

Primal problem

Maximize: 〈A,X 〉
Subject to: Φ(X )≤B

X ∈ Psd(X )
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Semidefinite Program

Alternate form of SDP

Let for some Z ∈Psd(Y), the constraint Φ(X )≤B can be reduced
to Φ(X ) + Z = B.

Let us define Ψ ∈ T(X ⊗ Y,Y) by

Ψ

(
X V
W Z

)
= Φ(X ) + Z

for all X ∈ L(X ), Y ∈ L(Y ), V ∈ L(Y,X ) W ∈ L(X ,Y).

Also define C as

(
A 0
0 0

)
.
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Alternate form of SDP

The primal and dual problems associated with the SDP (Ψ,C ,B) are:

Primal problem Dual problem

Max. 〈
(

A 0
0 0

)
,

(
X V
W Z

)
,X 〉

Sub. to: Ψ

(
X V
W Z

)
= B(

X V
W Z

)
∈ Psd(X ⊕ Y)

Min. 〈B,Y 〉

Sub. to: Ψ∗(Y ) ≥
(

A 0
0 0

)
Y ∈ Herm(Y)

,

where, Ψ∗(Y ) =

(
Φ∗(Y ) 0

0 Y

)
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Alternate form of SDP

∴ The primal & dual problems associated with SDP (Φ,A,B) are:

Primal problem Dual problem

Maximize: 〈A,X 〉
Subject to: Φ(X ) ≤ B

X ∈ Psd(X )

Minimize: 〈B,Y 〉
Subject to: Φ∗(Y ) ≥ A

Y ∈ Psd(Y)
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Semidefinite Program

Alternate form of SDP

SDP with equality & inequality constraints

Let Φk : L(X )→ L(Yk) (for k = 1, 2) be Hermiticity-preserving
maps,
let A ∈Herm(X ) and Bk ∈Herm(Yk) (k=1,2), be Hermitian
operators.

Primal problem Dual problem

Maximize: 〈A,X 〉
Subject to: Φ(X ) = B1

Φ(X ) ≤ B2

X ∈ Psd(X )

Minimize: 〈B1,Y1〉+ 〈B2,Y2〉
Subject to: Φ∗1(Y1) + Φ∗2(Y2) ≥ A

Y1 ∈ Herm(Y1)
Y2 ∈ Psd(Y2)
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Semidefinite Program

Alternate form of SDP

Standard form of SDP

Primal problem Dual problem

Maximize: 〈A,X 〉
Subject to: 〈Bk ,X 〉 = γk

k = 1, · · · , 2
X ∈ Psd(X )

Minimize:
∑m

j=1 γjyj
Subject to:

∑m
j=1 yjBj ≥ A

yj ∈ R
j = 1, · · · ,m

Here, Bk ∈Herm(X ).
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Optimal measurements

SDP in Quantum Information
Optimal measurements: Suppose that we have an ensemble of
states

E = {(pj , ρj)}mj=1

where pj is a probability for the density operator ρj ∈ D(Y),
j = 1, 2, ..,m.

Task: Identify the correct value of k (i.e., ρk) for a
given(randomly) single copy of a quantum state from ρk
k ∈ {1, 2, ..,m}.

In other words, we wish to choose a measurement
M = {M1,M2, . . . ,Mm} so as to maximize the quantity

m∑
k=1

pk〈Mk , ρk〉



Semidefinite Programming in Quantum Information Theory

SDP in Quantum Information

Optimal measurements

So our optimization problem is:

Maximize:
m∑

k=1

pk〈ρk ,Mk〉

Subject to:
m∑
i=1

Mi = I

∀ i = 1, 2, . . . ,m; Mi ∈ Psd(Y)

This is, the primal problem corresponding to (Φ,A,B) where

Φ

 M1 · · · .
...

. . .
...

. · · · Mm

 =
m∑

k=1

Mk , A =

 p1ρ1 · · · ·
...

. . .
...

· · · · pmρm


and B = I, where we have taken X = Y ⊕ · · · ⊕ Y (m-times).



Semidefinite Programming in Quantum Information Theory

SDP in Quantum Information

Optimal measurements

Now observe that:

Φ

 M1 · · · .
...

. . .
...

. · · · Mm

 =
m∑

k=1

Mk , ⇒ Φ∗(Y ) =

 Y · · · ·
...

. . .
...

· · · · Y


Hence the dual problem is given by

Minimize: Tr(Y )

subject to:

 Y · · · ·
...

. . .
...

· · · · Y

 ≥
 p1ρ1 · · · ·

...
. . .

...
· · · · pmρm


Y ∈ Herm(Y)
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SDP in Quantum Information

Optimal measurements

∴ The SDP of the concerning problem is

Primal problem Maximize:
m∑

k=1

pk〈ρk ,Mk〉

subject to:
m∑

k=1

Mk = I

Mk ∈ Psd(Y) ∀

Dual problem Minimize: Tr(Y )

subject to: Y ≥ pkρk

Y ∈ Herm(Y)
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SDP in Quantum Information

Non-local Game

Nonlocal Game

Two cooperative players (Alice and Bob) playing a game against the
Referee.

u ∈ U
↓

v ∈ V
↓

Alice Bob

↓
a ∈ A

↓
b ∈ B

1. Referee randomly selects questions: u ∈ U for Alice, v ∈ V for Bob.

2. Alice responds with a a ∈ A, Bob responds with b ∈ B.

3. Referee evaluates some fixed predicate on (u, v , a, b) to determine
the result: Alice and Bob win or Alice and Bob lose.

Communication between Alice and Bob is not allowed after the game
start.
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SDP in Quantum Information

Non-local Game

Particular Case: CHSH game is a nonlocal game in which
A = B = {0, 1} and

1. The referee chooses u, v ∈ {0, 1} uniformly at random.

2. Alice and Bob respond with a, b ∈ {0, 1}.

3. They win iff a⊕ b = u ∧ v [for general XOR game,
a⊕ b = f (u, v)].

We know that classically (i.e., without entanglement) Alice and
Bob can win with probability at most 3/4.

But, using entanglement they can win with probability
cos2(π/8) ≈ 0.85.
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Non-local Game

Strategy for Alice and Bob in an XOR game:

1. A shared entangled state |ψ〉 ∈ A ⊗ B.

2. A choice of binary-valued (projective) measurements:

{Πu
0 ,Π

u
1}u∈U for Alice, {Πv

0 ,Π
v
1}v∈V for Bob.

The probability they output (a, b) on questions (u, v) is therefore

〈ψ|Πu
a ⊗ Πv

b|ψ〉

The probability that such a strategy wins an XOR game defined
by the function f : U × V → {0, 1} is

1

2
+

1

2

∑
u,v

π(u, v)(−1)f (u,v)〈|(Πu
0 − Πv

1)⊗ (Πu
0 − Πv

1)〉

[Probability of winning minus losing.]
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Tsirelson’s correspondence

The winning probability

1

2
+

1

2

∑
u,v

π(u, v)(−1)f (u,v)〈|(Πu
0 − Πv

1)⊗ (Πu
0 − Πv

1)〉

It is not difficult to prove that there must necessarily exist
collections of real unit vectors {| eu〉}u∈U and {| fv 〉}v∈V such that

〈eu|fv 〉 = 〈ψ|(Πu
0 − Πu

1)⊗ (Πv
0 − Πv

1)|ψ〉

Tsirelson’s correspondence establishes that this is also a sufficient
condition.
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Tsirelson’s correspondence

That is, given any two collections of real unit vectors {keteu}u∈U
and {| fv 〉}v∈V there must exist

1. a shared entangled state |ψ〉 ∈ A × B, and

2. a choice of binary-valued measurements: {Πu
0 ,Π

v
1}u∈U for

Alice, {Πv
0 ,Π

v
1}v∈V for Bob, such that

〈eu|fv 〉 = 〈ψ|(Πu
0 − Πu

1)⊗ (Πv
0 − Πv

1)|ψ〉

The proof is based on the Weyl-Brauer matrices:

σz ⊗ · · · ⊗ σz ⊗ σx ⊗ I⊗ · · · ⊗ I
σz ⊗ · · · ⊗ σz ⊗ σx ⊗ I⊗ · · · ⊗ I
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Now the expression of the winning probability reduces to∑
u,v

π(u, v)(−1)f (u,v)〈eu|fv 〉,

over all collections of real unit vectors {| eu〉}u∈U and {| fv 〉}v∈V .

Now define a matrix C (indexed by U × V ) as

C (u, v) = π(u, v)(−1)f (u,v)

and an operator A ∈ Herm(CU ⊕ CV ) as

A =
1

2

(
0 C
C 0

)
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Now, for a given collection of real unit vectors, consider the matrix
X , indexed by the disjoint union U

⋃
V , as follows:

X =

(
〈eu0 , eu1〉 〈eu0 , fv1〉
〈fv0 , eu1〉 〈fv0 , fu1〉

)
In words, this is the Gram matrix of the collection of vectors
{eu}u∈U

⋃
{fv}v∈V .

It is necessarily positive semidefinite, has real entries, and diagonal
entries equal to 1.

Conversely, any matrix with these properties must be obtained from
a collection of real unit vectors {ev}v∈U

⋃
{fv}v∈V in this way.
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SDP associated to the give XOR game:

Primal problem Dual problem

Maximize: 〈A,X 〉
subject to: ∆(X ) = I

X ∈ Psd(CU ⊕ CV )

Minimize: Tr(Y )
subject to: ∆ ≥ A

Y ∈ Herm(CU ⊕ CV )
,

where A = 1
2

(
0 C
C ∗ 0

)
and the mapping ∆ is the completely

dephasing channel, which zeroes out all off-diagonal entries and
leaves diagonal entries unchanged.
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