Semidefinite Programming in Quantum Information Theory

Ramij Rahaman

Department of Mathematics University of Allahabad Allahabad 211002 UP, India

Table of contents

Introduction Basic notations

Semidefinite Program

Examples Duality Alternate form of SDP

SDP in Quantum Information

Optimal measurements Non-local Game

References

- John Watrous. Lecture CS 766/QIC 820 Theory of Quantum Information. University of Waterloo, Fall 2011.
- J. Watrous, lecture slide on Semidefinite Programming in the Theory of Quantum Information [Present talk is highly inspired by this Ref.].
- M Navascues, S Pironio and A Acin, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations, New Journal of Physics 10 (2008) 073013.
 - Robert M. Freund, Introduction to Semidefinite Programming (SDP).
 - J. F. Sturm, Optim. Methods Softw. 17, 6 (2002).
- J. F. Sturm, Optim. Methods Softw. 11, 625 (1999).
- J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2009).
 - L. Masanes, S. Pironio and Antonio Acin, Nature Communications 2, 238 (2011)

Basic notations:

Linear operators: A linear operator T is an operator such that

(i) the domain D(T) of T is a vector space and the range R(T) lies in a vector space over the same field.

(ii) for all $x, y \in \mathcal{D}(T)$ and scalars α, β ,

 $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

For vector spaces \mathcal{X} & \mathcal{Y} ,

 $\begin{array}{lll} L(\mathcal{X},\mathcal{Y}) &\equiv & \{T \mid T \text{ is a linear mapping/operator from } \mathcal{X} \text{ to } \mathcal{Y} \} \\ L(\mathcal{X}) &= & L(\mathcal{X},\mathcal{X}) \end{array}$

If $\mathcal{X} = \mathbb{C}^{\Lambda}$ and $\mathcal{Y} = \mathbb{C}^{\Gamma}$, then $L(\mathcal{X}, \mathcal{Y})$ is the set of all matrices with rows indexed by Γ and columns indexed by Λ .

Basic notations:

Linear operators: A linear operator T is an operator such that

(i) the domain D(T) of T is a vector space and the range R(T) lies in a vector space over the same field.

(ii) for all $x, y \in \mathcal{D}(T)$ and scalars α, β ,

 $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

For vector spaces \mathcal{X} & \mathcal{Y} ,

 $\begin{array}{lll} L(\mathcal{X},\mathcal{Y}) &\equiv & \{T \mid T \text{ is a linear mapping/operator from } \mathcal{X} \text{ to } \mathcal{Y} \} \\ L(\mathcal{X}) &= & L(\mathcal{X},\mathcal{X}) \end{array}$

If $\mathcal{X} = \mathbb{C}^{\Lambda}$ and $\mathcal{Y} = \mathbb{C}^{\Gamma}$, then $L(\mathcal{X}, \mathcal{Y})$ is the set of all matrices with rows indexed by Γ and columns indexed by Λ .

Basic notations

Adjoint operator: Let $T \in L(\mathcal{X}, \mathcal{Y})$. Then the adjoint operator T^* of T is the operator $T^* : \mathcal{Y} \to \mathcal{X}$ such that for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

 $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$

As a matrix, T^* is the conjugate transpose (or Hermitian transpose) of T, and is often denoted T^{\dagger} .

Basic notations

Inner product: For $A, B \in L(\mathcal{X}, \mathcal{Y})$, we define the inner product as

$$\langle A,B
angle = {\sf Tr}\left(A^{\dagger}B
ight)$$

Hermitian/self-adjoint operators: An operator $T \in L(\mathcal{X})$ is called Hermitian/self-adjoint if $T^* = T^{\dagger} = T$.

We will write Herm(X) to denote the set of all such operators of $L(\mathcal{X})$.

Positive semidefinite operators: Let $T \in Herm(\mathcal{X})$. Then T is said to be positive semidefinite, written

 $T \ge 0$ if and only if $\langle T(x), x \rangle \ge 0$ for all $x \in \mathcal{X}$

That is, eigenvalues of T are nonnegative.

We denote the set of all positive semidefinite operators from $\operatorname{Herm}(\mathcal{X})$ by $\operatorname{Psd}(\mathcal{X})$.

Remarks: Positive semidefinite operators having trace equal to one are called density operators.

 $D(\mathcal{X}) = \{ \rho | \rho \in \mathsf{Psd}(\mathcal{X}) \& \mathsf{Tr}(\rho) = 1 \}$

Positive semidefinite operators: Let $T \in Herm(\mathcal{X})$. Then T is said to be positive semidefinite, written

 $T \ge 0$ if and only if $\langle T(x), x \rangle \ge 0$ for all $x \in \mathcal{X}$

That is, eigenvalues of T are nonnegative.

We denote the set of all positive semidefinite operators from $Herm(\mathcal{X})$ by $Psd(\mathcal{X})$.

Remarks: Positive semidefinite operators having trace equal to one are called density operators.

 $D(\mathcal{X}) = \{ \rho | \rho \in \mathsf{Psd}(\mathcal{X}) \& \mathsf{Tr}(\rho) = 1 \}$

Basic notations

Linear mappings on operators: Let us define

 $T(\mathcal{X},\mathcal{Y}) \equiv \{ \Phi | \ \Phi : L(\mathcal{X}) \to L(\mathcal{Y}), \text{ a linear map} \}$

For every $\Phi \in T(\mathcal{X}, \mathcal{Y})$, we define the adjoint mapping $\Phi^* \in T(\mathcal{Y}, \mathcal{X})$ to be the unique mapping that satisfies

 $\langle Y, \Phi(X) \rangle = \langle \Phi^*(Y), X \rangle$ for all $X \in L(\mathcal{X})$ & $Y \in L(\mathcal{Y})$.

A mapping $\Phi \in T(\mathcal{X}, \mathcal{Y})$ is Hermiticity-preserving if $\Phi(X) \in$ Herm (\mathcal{Y}) for all $X \in$ Herm (\mathcal{X}) .

Semidefinite Program (SDP)

A semidefinite program (SDP) is a pair of optimization problems (Primal & Dual), specified by a triple (Φ , A, B), where

- 1. $\Phi \in T(\mathcal{X}, \mathcal{Y})$ is a Hermiticity-preserving mapping,
- 2. $A \in \text{Herm}(\mathcal{X})$, and
- 3. $B \in \text{Herm}(\mathcal{Y})$.

Then the concerning pair of optimization problems are:

Primal problem

 $\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \Phi(X) = B \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$

Dual problem

 $\begin{array}{ll} \mathsf{Minimize:} & \langle B, Y \rangle \\ \mathsf{Subject to:} & \Phi^*(Y) \geq A \\ Y \in \mathsf{Herm}(\mathcal{Y}) \end{array}$

Semidefinite Program (SDP)

A semidefinite program (SDP) is a pair of optimization problems (Primal & Dual), specified by a triple (Φ , A, B), where

- 1. $\Phi \in T(\mathcal{X}, \mathcal{Y})$ is a Hermiticity-preserving mapping,
- 2. $A \in \text{Herm}(\mathcal{X})$, and
- 3. $B \in \text{Herm}(\mathcal{Y})$.

Then the concerning pair of optimization problems are:

Primal problem

 $\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \Phi(X) = B \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$

Dual problem

 $\begin{array}{ll} \text{Minimize:} & \langle B, Y \rangle \\ \text{Subject to:} & \Phi^*(Y) \ge A \\ & Y \in \text{Herm}(\mathcal{Y}) \end{array}$

Let α be the optimal value of the primal problem

 $\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \Phi(X) = B \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$

 $\alpha = \sup_{X \in \mathscr{A}} \langle A, X \rangle; \quad \mathscr{A} = \{ X \in \mathsf{Psd}(\mathcal{X}) | \ \Phi(X) = B \}$

and β be the optimal value of the dual problem

 $\begin{array}{ll} \mathsf{Minimize:} & \langle B, Y \rangle \\ \mathsf{Subject to:} & \Phi^*(Y) \geq A \\ & Y \in \mathsf{Herm}(\mathcal{Y}) \end{array}$

 $\beta = \inf_{\mathbf{Y} \in \mathscr{B}} \langle \mathbf{B}, \mathbf{Y} \rangle; \quad \mathscr{B} = \{ \mathbf{Y} \in \operatorname{Herm}(\mathcal{Y}) | \ \Phi^*(\mathbf{Y}) \ge A \}$

Remarks: Sup/inf cannot be replaced by a maximum/minimum in general, in some cases the optimal values will not be achieved.

Let α be the optimal value of the primal problem

 $\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \Phi(X) = B \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$

 $\alpha = \sup_{X \in \mathscr{A}} \langle A, X \rangle; \quad \mathscr{A} = \{ X \in \mathsf{Psd}(\mathcal{X}) | \ \Phi(X) = B \}$

and β be the optimal value of the dual problem

 $\begin{array}{ll} \mathsf{Minimize:} & \langle B, Y \rangle \\ \mathsf{Subject to:} & \Phi^*(Y) \geq A \\ & Y \in \mathsf{Herm}(\mathcal{Y}) \end{array}$

 $\beta = \inf_{\mathbf{Y} \in \mathscr{B}} \langle B, \mathbf{Y} \rangle; \quad \mathscr{B} = \{ \mathbf{Y} \in \operatorname{Herm}(\mathcal{Y}) | \ \Phi^*(\mathbf{Y}) \ge A \}$

Remarks: Sup/inf cannot be replaced by a maximum/minimum in general, in some cases the optimal values will not be achieved.

Example 1: Let us consider,

 $\mathcal{X} = \mathbb{C}^n \quad \& \mathcal{Y} = \mathbb{C},$

and for any $A \in \text{Herm}(\mathbb{C}^n)$ we take $\Phi \equiv \text{Tr}$ and B = 1.

Then the primal problem associated with this SDP as follows:

 $\begin{array}{lll} \text{Maximize:} & \langle A, X \rangle & \text{Maximize:} & \langle A, \rho \rangle \\ \text{Subject to:} & \Phi(X) = \text{Tr}(X) = 1 & \Rightarrow & \text{Subject to:} & \rho \in D(\mathbb{C}^n). \\ & X \in \text{Psd}(\mathbb{C}^n) \end{array}$

Example 1: Let us consider,

 $\mathcal{X} = \mathbb{C}^n \quad \& \mathcal{Y} = \mathbb{C},$

and for any $A \in \text{Herm}(\mathbb{C}^n)$ we take $\Phi \equiv \text{Tr}$ and B = 1.

Then the primal problem associated with this SDP as follows:

 $\begin{array}{lll} \text{Maximize:} & \langle A, X \rangle & \text{Maximize:} & \langle A, \rho \rangle \\ \text{Subject to:} & \Phi(X) = \text{Tr}(X) = 1 & \Rightarrow & \text{Subject to:} & \rho \in D(\mathbb{C}^n). \\ & X \in \text{Psd}(\mathbb{C}^n) \end{array}$

 $A = \sum_{k=1}^{n} \lambda_k |x_k\rangle \langle x_k |.$

Here, $\lambda_1 \geq \cdots \geq \lambda_n$ are eigenvalues of A and $\{|x_1\rangle, \ldots, |x_n\rangle\}$ is an orthonormal basis of \mathbb{C}^n consisting of corresponding eigenvectors.

Example 1: Let us consider,

 $\mathcal{X} = \mathbb{C}^n \quad \& \mathcal{Y} = \mathbb{C},$

and for any $A \in \text{Herm}(\mathbb{C}^n)$ we take $\Phi \equiv \text{Tr}$ and B = 1.

Then the primal problem associated with this SDP as follows:

 $\begin{array}{lll} \text{Maximize:} & \langle A, X \rangle & \text{Maximize:} & \langle A, \rho \rangle \\ \text{Subject to:} & \Phi(X) = \text{Tr}(X) = 1 & \Rightarrow & \text{Subject to:} & \rho \in D(\mathbb{C}^n). \\ & X \in \text{Psd}(\mathbb{C}^n) \end{array}$

$$A = \sum_{k=1}^n \lambda_k |x_k\rangle \langle x_k |.$$

Here, $\lambda_1 \geq \cdots \geq \lambda_n$ are eigenvalues of A and $\{|x_1\rangle, \ldots, |x_n\rangle\}$ is an orthonormal basis of \mathbb{C}^n consisting of corresponding eigenvectors.

Examples

$$A = \sum_{k=1}^{n} \lambda_k |x_k\rangle \langle x_k |.$$

For any $\rho \in D(\mathbb{C}^n)$, we have

$$\langle A, \rho \rangle = \sum_{k=1}^{n} \lambda_k \langle | x_k \rangle \langle x_k |, \rho \rangle,$$

The optimal value is $\alpha = \lambda_1$ (the largest eigenvalue of A).

Now the associate dual problem for our example $[\mathcal{X} = \mathbb{C}^n, \mathcal{Y} = \mathbb{C}, \Phi \equiv \text{Tr}, \text{ and } B = 1]$ is

If $\Phi \in T(\mathbb{C}^n, \mathbb{C})$ defined as $\Phi(X) = Tr(X)$ then $\Phi^* \in T(\mathbb{C}, \mathbb{C}^n)$ will be

 $\Phi^*(y) = \lambda \mathbb{I},$

as $\langle y, Tr(X) \rangle = \langle y \mathbb{I}, X \rangle.$

Then $\beta = \lambda_1$ [Check this].

Usually $\alpha = \beta$ happens i.e., optimal value of the primal = optimal of the dual problem.

Now the associate dual problem for our example $[\mathcal{X} = \mathbb{C}^n, \mathcal{Y} = \mathbb{C}, \Phi \equiv \text{Tr}, \text{ and } B = 1]$ is

If $\Phi \in T(\mathbb{C}^n, \mathbb{C})$ defined as $\Phi(X) = Tr(X)$ then $\Phi^* \in T(\mathbb{C}, \mathbb{C}^n)$ will be

 $\Phi^*(y) = \lambda \mathbb{I},$

as $\langle y, Tr(X) \rangle = \langle y \mathbb{I}, X \rangle.$

Then $\beta = \lambda_1$ [Check this].

Usually $\alpha = \beta$ happens i.e., optimal value of the primal = optimal of the dual problem.

Example 2: Take $\mathcal{X} = \mathbb{C}^2 = \mathcal{Y}$ and define $A, B \in \text{Herm}(\mathbb{C}^2)$ and the Hermiticity-preserving linear map $\Phi \in T(\mathcal{X}, \mathcal{Y})$ as

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \& \quad \Phi(X) = \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix},$$

for all $X \in L(\mathcal{X})$. Now the primal problem is

It holds that $\alpha = 0$, but there does not exist an optimal primal solution to this SDP.

Example 2: Take $\mathcal{X} = \mathbb{C}^2 = \mathcal{Y}$ and define $A, B \in \text{Herm}(\mathbb{C}^2)$ and the Hermiticity-preserving linear map $\Phi \in T(\mathcal{X}, \mathcal{Y})$ as

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \& \quad \Phi(X) = \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix},$$

for all $X \in L(\mathcal{X})$. Now the primal problem is

It holds that $\alpha = 0$, but there does not exist an optimal primal solution to this SDP.

The condition $\Phi(X) = B$ implies that X takes form

$$X = \left(\begin{array}{cc} X_{11} & 1 \\ 1 & X_{22} \end{array}\right)$$

Since $X \ge 0$, so we must have $X_{11} \ge 0$ and $det(X) = X_{11}X_{22} - 1 \ge 0$.

Therefore, $X_{11} > 0$. Hence $\langle A, X \rangle = -X_{11} < 0$.

On the other hand take $X = \begin{pmatrix} \frac{1}{n} & 1\\ 1 & n^2 \end{pmatrix}$. Then $\langle A, X_n \rangle = -\frac{1}{n}$ and $\alpha \ge -\frac{1}{n}$. The condition $\Phi(X) = B$ implies that X takes form

$$X = \left(\begin{array}{cc} X_{11} & 1 \\ 1 & X_{22} \end{array}\right)$$

Since $X \ge 0$, so we must have $X_{11} \ge 0$ and $det(X) = X_{11}X_{22} - 1 \ge 0$.

Therefore, $X_{11} > 0$. Hence $\langle A, X \rangle = -X_{11} < 0$.

On the other hand take $X = \begin{pmatrix} \frac{1}{n} & 1\\ 1 & n^2 \end{pmatrix}$. Then $\langle A, X_n \rangle = -\frac{1}{n}$ and $\alpha \ge -\frac{1}{n}$.

Weak Duality

For a SDP specified by (Φ, A, B) , the optimal primal value α and the optimal dual value β defined as

 $\begin{array}{rcl} \alpha & = & \sup\{\langle A, X \rangle : X \in \mathsf{Psd}(\mathcal{X}), \Phi(X) = B\}, \\ \beta & = & \inf\{\langle B, Y \rangle : Y \in \mathsf{Herm}(\mathcal{Y}), \Phi^*(Y) \ge A\} \end{array}$

Proposition: (Weak duality) For every SDP specified by (Φ, A, B) it holds that $\alpha \leq \beta$.

Proof. Suppose X is primal feasible and Y is dual feasible then

Weak Duality

For a SDP specified by (Φ, A, B) , the optimal primal value α and the optimal dual value β defined as

 $\begin{array}{rcl} \alpha & = & \sup\{\langle A, X \rangle : X \in \mathsf{Psd}(\mathcal{X}), \Phi(X) = B\}, \\ \beta & = & \inf\{\langle B, Y \rangle : Y \in \mathsf{Herm}(\mathcal{Y}), \Phi^*(Y) \ge A\} \end{array}$

Proposition: (Weak duality) For every SDP specified by (Φ, A, B) it holds that $\alpha \leq \beta$.

Proof. Suppose X is primal feasible and Y is dual feasible then

Strong Duality

The condition $\alpha = \beta$ is known as strong duality.

Remarks: Unlike weak duality, strong duality does not hold for every SDP, as the following example shows.

Example 3: Take $\mathcal{X} = \mathbb{C}^3, \mathcal{Y} = \mathbb{C}^2$ and define

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

and
$$\Phi(X) = \begin{pmatrix} X_{11} + X_{23} + X_{32} & 0 \\ 0 & X_{22} \end{pmatrix} \quad \forall \ X \in L(\mathcal{X})$$

Check that $\alpha = -1$ and $\beta = 0$.

Strong Duality

The condition $\alpha = \beta$ is known as strong duality.

Remarks: Unlike weak duality, strong duality does not hold for every SDP, as the following example shows.

Example 3: Take $\mathcal{X} = \mathbb{C}^3, \mathcal{Y} = \mathbb{C}^2$ and define

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

and
$$\Phi(X) = \begin{pmatrix} X_{11} + X_{23} + X_{32} & 0 \\ 0 & X_{22} \end{pmatrix} \quad \forall \ X \in L(\mathcal{X})$$

Check that $\alpha = -1$ and $\beta = 0$.

Slater's Theorem

For any SDP (Φ, A, B) followings are hold

- 1. Let \mathscr{A} be the set of primal feasible solutions. If $\mathscr{A} = \emptyset$ and there exists a Hermitian operator Y for which $\Phi^*(Y) > A$, then $\alpha = \beta$ and there exists a primal feasible operator $X \in \mathscr{A}$ for which $\langle A, X \rangle = \alpha$.
- Let ℬ be the set of dual feasible solutions. If ℬ = ∅ and there exists a positive semidefinite operator X for which Φ(X) = B and X > 0, then α = β and there exists a dual feasible operator Y ∈ ℬ for which ⟨B, Y⟩ = β.

Slater's Theorem

For any SDP (Φ, A, B) followings are hold

- 1. Let \mathscr{A} be the set of primal feasible solutions. If $\mathscr{A} = \emptyset$ and there exists a Hermitian operator Y for which $\Phi^*(Y) > A$, then $\alpha = \beta$ and there exists a primal feasible operator $X \in \mathscr{A}$ for which $\langle A, X \rangle = \alpha$.
- 2. Let \mathscr{B} be the set of dual feasible solutions. If $\mathscr{B} = \emptyset$ and there exists a positive semidefinite operator X for which $\Phi(X) = B$ and X > 0, then $\alpha = \beta$ and there exists a dual feasible operator $Y \in \mathscr{B}$ for which $\langle B, Y \rangle = \beta$.

Alternate form of SDP

Alternate form of SDP

What is the dual problem of the following primal problem?

Primal problem

 $\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \Phi(X) \leq B \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$

Semidefinite Programming in Quantum Information Theory
Semidefinite Program
Alternate form of SDP

Let for some $Z \in Psd(\mathcal{Y})$, the constraint $\Phi(X) \leq B$ can be reduced to $\Phi(X) + Z = B$.

Let us define $\Psi \in \mathrm{T}(\mathcal{X} \otimes \mathcal{Y}, \mathcal{Y})$ by

$$\Psi\left(\begin{array}{cc} X & V \\ W & Z \end{array}\right) = \Phi(X) + Z$$

for all $X \in L(\mathcal{X})$, $Y \in L(Y)$, $V \in L(\mathcal{Y}, \mathcal{X})$ $W \in L(\mathcal{X}, \mathcal{Y})$. Also define C as $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$. Semidefinite Programming in Quantum Information Theory
Semidefinite Program
Alternate form of SDP

Let for some $Z \in Psd(\mathcal{Y})$, the constraint $\Phi(X) \leq B$ can be reduced to $\Phi(X) + Z = B$.

Let us define $\Psi \in \mathrm{T}(\mathcal{X} \otimes \mathcal{Y}, \mathcal{Y})$ by

$$\Psi\left(\begin{array}{cc} X & V \\ W & Z \end{array}\right) = \Phi(X) + Z$$

for all $X \in L(\mathcal{X})$, $Y \in L(Y)$, $V \in L(\mathcal{Y}, \mathcal{X})$ $W \in L(\mathcal{X}, \mathcal{Y})$. Also define C as $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$. The primal and dual problems associated with the SDP (Ψ, C, B) are:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \operatorname{Primal \ problem} \\ Max. & \left\langle \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} X & V \\ W & Z \end{pmatrix}, X \right\rangle \end{array} \\ \begin{array}{c} \operatorname{Sub. \ to:} & \Psi\begin{pmatrix} X & V \\ W & Z \end{pmatrix} = B \\ \begin{pmatrix} X & V \\ W & Z \end{pmatrix} \in \operatorname{Psd}(\mathcal{X} \oplus \mathcal{Y}) \end{array} \\ \begin{array}{c} \operatorname{Sub. \ to:} & \Psi^*(Y) \geq \begin{pmatrix} A & 0 \\ 0 & 0 \\ Y \in \operatorname{Herm}(\mathcal{Y}) \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{where,} \Psi^*(Y) = \begin{pmatrix} \Phi^*(Y) & 0 \\ 0 & Y \end{pmatrix} \end{array}$$

\therefore The primal & dual problems associated with SDP (Φ, A, B) are:

Primal problemDual problemMaximize: $\langle A, X \rangle$ Minimize: $\langle B, Y \rangle$ Subject to: $\Phi(X) \leq B$ Subject to: $\Phi^*(Y) \geq A$ $X \in Psd(\mathcal{X})$ $Y \in Psd(\mathcal{Y})$

SDP with equality & inequality constraints

Let $\Phi_k : L(\mathcal{X}) \to L(\mathcal{Y}_k)$ (for k = 1, 2) be Hermiticity-preserving maps, let $A \in \text{Herm}(\mathcal{X})$ and $B_k \in \text{Herm}(\mathcal{Y}_k)$ (k=1,2), be Hermitian operators.

$\begin{array}{c|c} \underline{\mathsf{Primal problem}} & \underline{\mathsf{Dual problem}} \\ \text{Maximize:} & \langle A, X \rangle & \text{Minimize:} & \langle B_1, Y_1 \rangle + \langle B_2, Y_2 \rangle \\ \text{Subject to:} & \Phi(X) = B_1 & \text{Subject to:} & \Phi_1^*(Y_1) + \Phi_2^*(Y_2) \ge A \\ & \Phi(X) \le B_2 & Y_1 \in \mathsf{Herm}(\mathcal{Y}_1) \\ & X \in \mathsf{Psd}(\mathcal{X}) & Y_2 \in \mathsf{Psd}(\mathcal{Y}_2) \end{array}$

Semidefinite Program

Alternate form of SDP

Standard form of SDP

Primal problem

$$\begin{array}{ll} \text{Maximize:} & \langle A, X \rangle \\ \text{Subject to:} & \langle B_k, X \rangle = \gamma_k \\ & k = 1, \cdots, 2 \\ & X \in \mathsf{Psd}(\mathcal{X}) \end{array}$$

Here, $B_k \in \text{Herm}(\mathcal{X})$.

└─Optimal measurements

SDP in Quantum Information

Optimal measurements: Suppose that we have an ensemble of states

 $\mathcal{E} = \{(p_j, \rho_j)\}_{j=1}^m$

where p_j is a probability for the density operator $\rho_j \in D(\mathcal{Y})$, j = 1, 2, ..., m.

Task: Identify the correct value of k (i.e., ρ_k) for a given(randomly) single copy of a quantum state from ρ_k $k \in \{1, 2, ..., m\}$.

In other words, we wish to choose a measurement $\mathcal{M} = \{M_1, M_2, \dots, M_m\}$ so as to maximize the quantity

$$\sum_{k=1}^m p_k \langle M_k, \rho_k \rangle$$

└─Optimal measurements

So our optimization problem is:

$$\begin{array}{ll} \text{Maximize:} & \sum_{k=1}^{m} p_k \langle \rho_k, M_k \rangle \\ \text{Subject to:} & \sum_{i=1}^{m} M_i = \mathbb{I} \\ & \forall i = 1, 2, \dots, m; \quad M_i \in \mathsf{Psd}(\mathcal{Y}) \end{array}$$

This is, the primal problem corresponding to (Φ, A, B) where

$$\Phi\left(\begin{array}{ccc}M_{1}&\cdots&\cdot\\\vdots&\ddots&\vdots\\\cdot&\cdots&M_{m}\end{array}\right)=\sum_{k=1}^{m}M_{k},\quad A=\left(\begin{array}{ccc}p_{1}\rho_{1}&\cdots&\cdot\\\vdots&\ddots&\vdots\\\cdot&\cdots&p_{m}\rho_{m}\end{array}\right)$$

and $B = \mathbb{I}$, where we have taken $\mathcal{X} = \mathcal{Y} \oplus \cdots \oplus \mathcal{Y}$ (m-times).

Semidefinite Programming in Quantum Information Theory
SDP in Quantum Information
Optimal measurements

Now observe that:

$$\Phi\left(\begin{array}{ccc}M_{1}&\cdots&\cdot\\\vdots&\ddots&\vdots\\\cdot&\cdots&M_{m}\end{array}\right)=\sum_{k=1}^{m}M_{k}, \ \Rightarrow \ \Phi^{*}(Y)=\left(\begin{array}{ccc}Y&\cdots&\cdot\\\vdots&\ddots&\vdots\\\cdot&\cdots&Y\end{array}\right)$$

Hence the dual problem is given by

Semidefinite Programming in Quantum Information Theory
SDP in Quantum Information
Optimal measurements

 \therefore The SDP of the concerning problem is

Primal problem Maximize: $\sum p_k \langle \rho_k, M_k \rangle$ m subject to: $\sum_{k=1}^{m} M_k = \mathbb{I}$ $M_k \in \mathsf{Psd}(\mathcal{Y}) \ \forall$ Dual problem Minimize: Tr(Y)subject to: $Y \ge p_k \rho_k$ $Y \in \text{Herm}(\mathcal{Y})$

-SDP in Quantum Informat

Non-local Game

Nonlocal Game

Two cooperative players (Alice and Bob) playing a game against the Referee.

1. Referee randomly selects questions: $u \in U$ for Alice, $v \in V$ for Bob.

2. Alice responds with a $a \in A$, Bob responds with $b \in B$.

SDP in Quantum Information

Non-local Game

Nonlocal Game

Two cooperative players (Alice and Bob) playing a game against the Referee.

1. Referee randomly selects questions: $u \in U$ for Alice, $v \in V$ for Bob.

- 2. Alice responds with a $a \in A$, Bob responds with $b \in B$.
- 3. Referee evaluates some fixed predicate on (u, v, a, b) to determine the result: Alice and Bob win or Alice and Bob lose.

Communication between Alice and Bob is not allowed after the game start.

SDP in Quantum Information

└─ Non-local Game

Nonlocal Game

Two cooperative players (Alice and Bob) playing a game against the Referee.

- 1. Referee randomly selects questions: $u \in U$ for Alice, $v \in V$ for Bob.
- 2. Alice responds with a $a \in A$, Bob responds with $b \in B$.
- 3. Referee evaluates some fixed predicate on (u, v, a, b) to determine the result: Alice and Bob win or Alice and Bob lose.

Communication between Alice and Bob is not allowed after the game start.

Particular Case: CHSH game is a nonlocal game in which $A = B = \{0, 1\}$ and

- 1. The referee chooses $u, v \in \{0, 1\}$ uniformly at random.
- 2. Alice and Bob respond with $a, b \in \{0, 1\}$.
- 3. They win iff $a \oplus b = u \wedge v$ [for general XOR game, $a \oplus b = f(u, v)$].

Particular Case: CHSH game is a nonlocal game in which $A = B = \{0, 1\}$ and

- 1. The referee chooses $u, v \in \{0, 1\}$ uniformly at random.
- 2. Alice and Bob respond with $a, b \in \{0, 1\}$.
- 3. They win iff $a \oplus b = u \wedge v$ [for general XOR game, $a \oplus b = f(u, v)$].

We know that classically (i.e., without entanglement) Alice and Bob can win with probability at most 3/4.

But, using entanglement they can win with probability $\cos^2(\pi/8) \approx 0.85$.

Particular Case: CHSH game is a nonlocal game in which $A = B = \{0, 1\}$ and

- 1. The referee chooses $u, v \in \{0, 1\}$ uniformly at random.
- 2. Alice and Bob respond with $a, b \in \{0, 1\}$.
- 3. They win iff $a \oplus b = u \wedge v$ [for general XOR game, $a \oplus b = f(u, v)$].

We know that classically (i.e., without entanglement) Alice and Bob can win with probability at most 3/4.

But, using entanglement they can win with probability $\cos^2(\pi/8) \approx 0.85$.

Strategy for Alice and Bob in an XOR game:

- 1. A shared entangled state $|\psi\rangle \in \mathcal{A} \otimes \mathcal{B}$.
- 2. A choice of binary-valued (projective) measurements:

 $\{\Pi_0^u, \Pi_1^u\}_{u \in U}$ for Alice, $\{\Pi_0^v, \Pi_1^v\}_{v \in V}$ for Bob.

Strategy for Alice and Bob in an XOR game:

- 1. A shared entangled state $|\psi\rangle \in \mathcal{A} \otimes \mathcal{B}$.
- 2. A choice of binary-valued (projective) measurements:

$\{\Pi_0^u,\Pi_1^u\}_{u\in U} \text{ for Alice}, \qquad \{\Pi_0^v,\Pi_1^v\}_{v\in V} \text{ for Bob}.$

The probability they output (a, b) on questions (u, v) is therefore

 $\langle \psi | \Pi^u_a \otimes \Pi^v_b | \psi \rangle$

The probability that such a strategy wins an XOR game defined by the function $f: U \times V \to \{0,1\}$ is

$$\frac{1}{2} + \frac{1}{2} \sum_{u,v} \pi(u,v) (-1)^{f(u,v)} \langle | (\Pi_0^u - \Pi_1^v) \otimes (\Pi_0^u - \Pi_1^v) \rangle$$

[Probability of winning minus losing.]

Strategy for Alice and Bob in an XOR game:

- 1. A shared entangled state $|\psi\rangle \in \mathcal{A} \otimes \mathcal{B}$.
- 2. A choice of binary-valued (projective) measurements:

 $\{\Pi_0^u,\Pi_1^u\}_{u\in U} \text{ for Alice}, \qquad \{\Pi_0^v,\Pi_1^v\}_{v\in V} \text{ for Bob}.$

The probability they output (a, b) on questions (u, v) is therefore

 $\langle \psi | \Pi^u_a \otimes \Pi^v_b | \psi \rangle$

The probability that such a strategy wins an XOR game defined by the function $f: U \times V \rightarrow \{0, 1\}$ is

$$\frac{1}{2} + \frac{1}{2} \sum_{u,v} \pi(u,v) (-1)^{f(u,v)} \langle | (\mathsf{\Pi}_0^u - \mathsf{\Pi}_1^v) \otimes (\mathsf{\Pi}_0^u - \mathsf{\Pi}_1^v) \rangle$$

[Probability of winning minus losing.]

Tsirelson's correspondence

The winning probability

$$\frac{1}{2} + \frac{1}{2} \sum_{u,v} \pi(u,v) (-1)^{f(u,v)} \langle | (\Pi_0^u - \Pi_1^v) \otimes (\Pi_0^u - \Pi_1^v) \rangle$$

It is not difficult to prove that there must necessarily exist collections of real unit vectors $\{|e_u\rangle\}_{u\in U}$ and $\{|f_v\rangle\}_{v\in V}$ such that

 $\langle e_u | f_v \rangle = \langle \psi | (\Pi_0^u - \Pi_1^u) \otimes (\Pi_0^v - \Pi_1^v) | \psi \rangle$

Tsirelson's correspondence establishes that this is also a sufficient condition.

Tsirelson's correspondence

That is, given any two collections of real unit vectors $\{kete_u\}_{u \in U}$ and $\{|f_v\rangle\}_{v \in V}$ there must exist

1. a shared entangled state $|\,\psi\rangle\in\mathcal{A}\times\mathcal{B}$, and

2. a choice of binary-valued measurements: $\{\Pi_0^u, \Pi_1^v\}_{u \in U}$ for Alice, $\{\Pi_0^v, \Pi_1^v\}_{v \in V}$ for Bob, such that

 $\langle e_u | f_v \rangle = \langle \psi | (\Pi_0^u - \Pi_1^u) \otimes (\Pi_0^v - \Pi_1^v) | \psi \rangle$

The proof is based on the Weyl-Brauer matrices:

 $\sigma_{z} \otimes \cdots \otimes \sigma_{z} \otimes \sigma_{x} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I}$ $\sigma_{z} \otimes \cdots \otimes \sigma_{z} \otimes \sigma_{x} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I}$

Tsirelson's correspondence

That is, given any two collections of real unit vectors $\{kete_u\}_{u \in U}$ and $\{|f_v\rangle\}_{v \in V}$ there must exist

- 1. a shared entangled state $|\psi
 angle\in\mathcal{A} imes\mathcal{B}$, and
- 2. a choice of binary-valued measurements: $\{\Pi_0^u, \Pi_1^v\}_{u \in U}$ for Alice, $\{\Pi_0^v, \Pi_1^v\}_{v \in V}$ for Bob, such that

 $\langle e_u | f_v \rangle = \langle \psi | (\Pi_0^u - \Pi_1^u) \otimes (\Pi_0^v - \Pi_1^v) | \psi \rangle$

The proof is based on the Weyl-Brauer matrices:

 $\sigma_{z} \otimes \cdots \otimes \sigma_{z} \otimes \sigma_{x} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I}$ $\sigma_{z} \otimes \cdots \otimes \sigma_{z} \otimes \sigma_{x} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I}$

Now the expression of the winning probability reduces to

$$\sum_{u,v} \pi(u,v) (-1)^{f(u,v)} \langle e_u | f_v \rangle,$$

over all collections of real unit vectors $\{|e_u\rangle\}_{u\in U}$ and $\{|f_v\rangle\}_{v\in V}$.

Now define a matrix C (indexed by $U \times V$) as

 $C(u,v) = \pi(u,v)(-1)^{f(u,v)}$

and an operator $A \in \operatorname{Herm}(\mathbb{C}^U \oplus \mathbb{C}^V)$ as

$$A = \frac{1}{2} \left(\begin{array}{cc} 0 & C \\ C & 0 \end{array} \right)$$

Now, for a given collection of real unit vectors, consider the matrix X, indexed by the disjoint union $U \mid JV$, as follows:

$$X = \left(\begin{array}{c|c} \langle e_{u_0}, e_{u_1} \rangle & \langle e_{u_0}, f_{v_1} \rangle \\ \hline \langle f_{v_0}, e_{u_1} \rangle & \langle f_{v_0}, f_{u_1} \rangle \end{array} \right)$$

In words, this is the Gram matrix of the collection of vectors $\{e_u\}_{u \in U} \bigcup \{f_v\}_{v \in V}$.

It is necessarily positive semidefinite, has real entries, and diagonal entries equal to 1.

Conversely, any matrix with these properties must be obtained from a collection of real unit vectors $\{e_v\}_{v \in U} \bigcup \{f_v\}_{v \in V}$ in this way.

SDP associated to the give XOR game:

Primal problemDual problemMaximize: $\langle A, X \rangle$ Minimize:Tr(Y)subject to: $\Delta(X) = \mathbb{I}$ subject to: $\Delta \ge A$ $X \in \mathsf{Psd}(\mathbb{C}^U \oplus \mathbb{C}^V)$ $Y \in \mathsf{Herm}(\mathbb{C}^U \oplus \mathbb{C}^V)$

where $A = \frac{1}{2} \begin{pmatrix} 0 & C \\ C^* & 0 \end{pmatrix}$ and the mapping Δ is the completely dephasing channel, which zeroes out all off-diagonal entries and leaves diagonal entries unchanged.