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Detecting entanglement

It is essential to have shared entangled states between
distantly located parties prior to efficient performance of
several quantum information processing tasks (like,
teleportation, superdense coding, etc.).

How to check that such a shared state – supplied apriori by
some source – is indeed the state Alice and Bob are supposed
to share? (preparation process)

And how to check that such a shared state – supplied apriori

by some source – is indeed entangled? (measurement process)

No assumption regarding faithfulness of preparation process is
needed for our purpose here as we will be dealing with
arbitrary states.
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Detecting entanglement (continued)

The measurement process corresponds to witnessing

entanglement in the shared state via measurement of the
corresponding entanglement witness operator using
measurements of local observables on the shared state.

Erroneous measurements of the local observables may lead to
witness a separable shared state to be entangled!

How to avoid such a situation?

It can be avoided if witnessing entanglement in the shared
state can be made possible in a measurement-device

independent (MDI) way.

Shown to be possible by Branciard et al. recently [Phys. Rev.
Lett. 110, 060405 (2013)].
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Detecting entanglement (continued)

But their scheme requires apriori knowledge about the shared
state – as the form of the EW operator depends, in general,
on the entangled state itself.

Here we discuss about witnessing entanglement in the shared
state in an MDI way without such apriori knowledge.

But we need to pay some extra price for that!

We require more copies of the shared state.

Moreover, knowledge of dimensions of individual subsystems is
needed – as in the case of Branciard et al.
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Witnessing entanglement
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What is an entangled state?

Given any density matrix ρAB of a bi-partite quantum system
S = A+ B – described by the composite Hilbert space

HS = HA ⊗HB – will be separable iff ρAB =
∑

i ωiσ
(i)
A ⊗ τ

(i)
B ,

with σ
(i)
A ’s (τ

(i)
B ’s) being density matrices of A (B) and

0 ≤ ωi ≤ 1 with
∑

i ωi = 1.

Otherwise ρAB is entangled.
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What is an entanglement witness operator?

Given any entangled state ρAB of a (given) bi-partite quantum
system S = A+ B , one can always (in principle) find out a
hermitian operator W on HS such that: (i) Tr[W ρ] < 0 and
(ii) Tr[Wσ] ≥ 0 for all separable states σAB of the system.

W is said to be an entanglement witness operator, witnessing
the entanglement in ρAB .

Given a different entangled state ρ′AB of the system, it may
happen that Tr[W ρ′] ≥ 0.

Thus W does not have a universal character, in general.
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Local realization of entanglement witness operator

One can always find out a set of observables
{Ai : i = 1, 2, . . . ,NA} for A as well as a set of observables
{Bj : j = 1, 2, . . . ,NB} (with NA ≤ d2

A ≡ (dimHA)
2 and

NB ≤ d2
B ≡ (dimHB)

2) such that:

W =
∑NA

i=1

∑NB

j=1 βijAi ⊗ Bj where βij ’s are real numbers.

So, given a state ρAB – shared between Alice and Bob –
measurement of one of the observables Ai ’s on A (by Alice)
and measurement of one of the observables Bj on B (by Bob)
will give rise to the measurement statistics Tr[(Ai ⊗ Bj)ρ].

Using these measurement statistics, one can calculate:
Tr[W ρ] =

∑NA

i=1

∑NB

j=1 βij Tr[(Ai ⊗ Bj)ρ].
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Local-realistic inequalities vs. entanglement witness

Every local-realistic inequality can be expressed in the form:
∑NA

i=1

∑NB

j=1 βij〈AiBj〉 ≥ k , a constant.

For any quantum state ρAB , satisfaction of such an inequality
takes the form:

∑NA

i=1

∑NB

j=1 βij Tr[(Ai ⊗ Bj)ρ] ≥ k .

This is equivalent to: Tr[WLRρ] ≥ 0 with
WLR ≡ ∑NA

i=1

∑NB

j=1 βij(Ai ⊗ Bj)− kId2
A
×d2

B
.

As no separable state σAB of the system violates any
local-realistic inequality, we must have: Tr[WLRσ] ≥ 0.

On the other hand, for any (entangled) state ρAB , violating
the inequality, we must have: Tr[WLRρ] < 0.

Thus WLR is an entanglement witness operator.

The converse is not true, in general – otherwise, loophole-free
test of BI would mean MDI witnessing of the corresponding
EW operator.
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Erroneous witnessing

The two photon-polarization state: ρvAB ≡
(1− v)|Ψ−〉AB〈Ψ−|+ (v/2)(|HH〉AB〈HH|+ |VV 〉AB〈VV |),
with |Ψ−〉AB ≡ (1/

√
2)(|HV 〉AB − |VH〉AB), is entangled iff

0 ≤ v < 1/2.

With the witness operator W ≡ (1/2)I4×4 − |Ψ−〉〈Ψ−|, we
have: Tr[W ρvAB ] = (2v − 1)/2 – which is negative iff v < 1/2.

For any ρAB : Tr[W ρAB ] =
(1/4)(1 + 〈σx ⊗ σx〉ρ + 〈σy ⊗ σy 〉ρ + 〈σy ⊗ σy 〉ρ) with
σx ≡ |H〉〈V |+ |V 〉〈H|, etc.
〈σj⊗σj〉ρ = 〈σ+j ⊗σ+j 〉ρ+〈σ−j ⊗σ−j 〉ρ−〈σ+j ⊗σ−j 〉ρ−〈σ−j ⊗σ−j 〉ρ
for j = x , y , z .

σj = σ+j − σ−j for all j (spectral decomposition).
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Erroneous witnessing (continued)

Experimental demonstration by Xu et al. [PRL 112, 140506
(2014)]

Using the time-shift attack of QKD, the coincidence counting
rate – for calculating 〈σ+j ⊗ σ+j 〉ρ and 〈σ−j ⊗ σ−j 〉ρ – can be

diminished for the separable state ρAB = ρv=1
AB , and thereby,

giving: 〈σαj ⊗ σαj 〉ρ ≡
N

(α)
jA N

(α)
jB /(N

(+)
jA N

(+)
jB +N

(+)
jA N

(−)
jB +N

(−)
jA N

(+)
jB +N

(−)
jA N

(−)
jB ) ≈ 0

for α = +,− and j = x , y , z .

Thus here: 〈σj ⊗ σj〉ρ ≈
−(N

(+)
jA N

(−)
jB + N

(−)
jA N

(+)
jB )/(N

(+)
jA N

(−)
jB + N

(−)
jA N

(+)
jB ) = −1 for

j = x , y , z .

It then gives rise to: Tr[W ρv=1
AB ] ≈ −(1/2)
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Time-shift attack on conventional EW
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Non-locality vs. entanglement
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Entanglement does not imply non-locality, in general

Two-qubit Werner state ρx ≡ x |ψ−〉〈ψ−|+ 1−x
4 I4×4 (with

|ψ−〉 ≡ (1/
√
2)(|01〉 − |10〉) and 0 ≤ x ≤ 1) is entangled for

all x with 1/3 < x ≤ 1.

But ρx is known to have a local-realistic model for its
measurement statistics (even for measurements of POVMs)
for certain range (R, say) of values of x within the interval
(1/3, 1].

Thus ρx can violate no local-realistic inequality for any such x

in R.

There are plenty of such examples!

But, can one utilize every entangled state for some information
processing task in a way which is more efficient that having
any separable state? (‘operational’ meaning of entanglement)
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Winning two-party co-operative game

In a two-party co-operative classical game G, the players Alice
and Bob are supplied with strategies s ∈ S and t ∈ T
respectively with probabilities p(s) and q(t) by a referee
(Charlie), and the players’ job is to come up with respective
(definite) outcomes x ∈ X and y ∈ Y so that the gain of the
two players together will be C(s, t, x , y) (to be given by the
referee).

Thus the maximum average pay-off of the game:
P(G) ≡ max

∑

s∈S,t∈T ,x∈X ,y∈Y p(s)q(t)C(s, t, x , y)µ(x , y |s, t),
where maximization is taken over all µ(x , y |s, t) – the joint
probability of occurance of the outcomes x and y for the
inputs s and t.
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Winning two-party co-operative game with shared
quantum state

Replacement of the strategies s (t) by pairwise orthogonal

quantum states τ
(s)
A0

(ω
(t)
B0

): does not really mean any change!

But now the players start the game with an apriori shared
entangled state ρAB .

Alice (Bob) now performs a measurement using a POVM

{E (x)
A0A

: x ∈ X} ({E (y)
B0B

: y ∈ Y}) jointly on A0 and A (B0

and B) to comeup with a measurement outcome x (y).

Maximum average pay-off:
P(G; ρ) ≡ max

∑

s∈S,t∈T ,x∈X ,y∈Y p(s)q(t)C(s, t, x , y)µρ(x , y |s, t),
where maximization is taken over all POVMs.

Here µρ(x , y |s, t) ≡ Tr[(E
(s)
A0A

⊗ E
(t)
B0B

)(τ
(s)
A0

⊗ ρAB ⊗ ω
(t)
B0

)].
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Winning two-party co-operative game with shared
quantum state (continued)

Is it true that for given any shared entangled state ρAB , there
always exists at least one game plan Gρ for which
P(Gρ;σ) < P(Gρ; ρ) for all separable states σAB?
It was shown to be untrue by Buscemi [Phys. Rev. Lett. 108,
200401 (2012)].
But in case the game strategies are associated with

non-orthogonal (in general) quantum inputs τ
(s)
A0

(ω
(t)
B0

), the
aforesaid fact was shown to be true for any given entangled
state ρAB – shown in the same work of Buscemi.
Note that, for any given game plan G, P(G;σ) is one and the

same for all separable states σAB .
Thus, every entangled state is more efficient to win a
‘non-local’ game compared to any separable state.
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Measurement-device independent entanglement witness
with apriori knowledge of state
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MDI-EW

Although Buscemi’s result prefers any entangled state over all
possible separable states while winning a non-local game, it
does not explicitly provide any scheme for detecting
entanglement.

Note that violation of a loophole-free local-realistic inequality
by any state necessarily indicates entanglement in the state in
a device-independent (DI) way within quantum theory: it
guarantees the presence of entanglement, independently
(i) of the measurements actually performed,
(ii) of the functioning of any device used in the experiment, as
well as
(iii) of the dimension of the underlying shared quantum state.
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MDI-EW (continued)

But such a DI entanglement witness scheme does not work for
all entangled states – some entangled states have local model.

Based on Buscemi’s result, Branciard et al. [Phys. Rev. Lett.
110, 060405 (2013)] provided a MDI-EW scheme for all
entangled state.

In fact, denoting the quantities p(s)q(t)P(s, t, x , y) in
Buscemi’s scheme by β̃s,t,x ,y , one can find out the expression
I (µ) ≡ ∑

s∈S,t∈T ,x∈X ,y∈Y β̃s,t,x ,yµ(x , y |s, t), where I (µ) ≥ 0
will necessarily mean the shared state to be separable.

This holds irrespective of the choice as well as performance of
measurement.

Thus, I (µ) < 0 implies entanglement in the shared state in a
MDI way.
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How does it work?

Assuming that {(τ (s))T : s ∈ S} ({(ω(t))T : t ∈ T }) can span
B(HA) (B(HB)), any EW operator W on HA ⊗HB can be
expressed as: W =

∑

s∈S,t∈T βst(τ
(s))T ⊗ (ω(t))T .

Here we take X = {0, 1} = Y.

For any shared separable state σAB =
∑

k pkσ
(k)
A ⊗ η

(k)
B and

for any POVM effect A1 (B1) corresponding to outcomes 1:
µσ(1, 1|τ (s), ω(t)) = Tr[(A1 ⊗ B1)(τ

(s) ⊗ σ ⊗ ω(t))] =
∑

k pk Tr[(A
(k)
1 ⊗ B

(k)
1 )(τ (s) ⊗ ω(t))] with

A
(k)
1 ≡ TrA[A1(I ⊗ σ

(k)
A )] and B

(k)
1 ≡ TrB [B1(η

(k)
B ⊗ I )].

Note that here: β̃s,t,1,1 = βst and β̃s,t,x ,y = 0 otherwise.
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How does it work (continued)

Here: I (µσ) =
∑

s∈S,t∈T βstµσ(1, 1|τ (s), ω(t)) =
∑

s∈S,t∈T βst
∑

k pk Tr[(A
(k)
1 ⊗ B

(k)
1 )(τ (s) ⊗ ω(t))] =

∑

k pk Tr[(A
(k)
1 ⊗ B

(k)
1 )W T ] = Tr[{∑k pk(A

(k)
1 )T ⊗

(B
(k)
1 )T}W ] ≥ 0, as {∑k pk(A

(k)
1 )T ⊗ (B

(k)
1 )T} is separable

(possibly unnormalized).

On the other hand, if W is an EW operator for a given
entangled state ρAB , we have (for A1 = |Φ〉AA〈Φ| and
B1 = |Φ〉BB〈Φ| with |Φ〉SS ≡ (1/dS)

∑dS
i=1 |ii〉SS for S =

A,B): µρ(1, 1|τ (s), ω(t)) = Tr[(|Φ〉AA〈Φ| ⊗ |Φ〉BB〈Φ|)(τ (s) ⊗
ρAB ⊗ ω(t))] = (1/(dAdB)) Tr[((τ

(s))T ⊗ (ω(t))T )ρAB ].

Then I (µρ) =
∑

s∈S,t∈T βstµρ(1, 1|τ (s), ω(t)) = Tr[W ρAB ]/(dAdB) < 0.
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Experimental demonstration of MDI-EW

Xu et al. [PRL 112, 140506 (2014)] have experimentally
demostrated the MDI-EW scheme successfully for the class of
two-photon polarization states: ρvAB ≡
(1− v)|Ψ−〉AB〈Ψ−|+ (v/2)(|HH〉AB〈HH|+ |VV 〉AB〈VV |)
(0 ≤ v ≤ 1), using a six photon interference process.
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Experimental demonstration of MDIEW [Xu et al., PRL 112,
140506 (2014)]
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Experimental demonstration of MDI-EW (continued)

On the other hand, Nawareg et al. [Scientific Reports, DOI:
10. 1038/srep08048] have experimentally demostrated the
MDI-EW scheme successfully for the class of two-photon
polarization states: ρpAB ≡ p|Ψ−〉AB〈Ψ−|+ ((1− p)/4)I4×4

(0 ≤ p ≤ 1), (again) using a six photon interference process.
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Experimental demonstration of MDIEW [Nawareg et al., SR
(2015)]
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Experimental demonstration of MDI-EW (continued)

Other than the entangled state generation processes, the two
experimental set-ups are similar.
In both the experiments, the referee uses a two-photon
interference process to generate the single photon polarization
states τs for Alice, and similarly for the states ωt to be
supplied to Bob.
This accounts for the six photon requirement in each of these
experiments.
The witness operator being used in both the
experiments: W ≡ (1/2)I4×4 − |Ψ−〉〈Ψ−|.
Due to the supply of the single photon states τs and ωt ,

supression of the positive results 〈σ(α)j ⊗ σ
(α)
j 〉

ρ
(for

α = +,−) – unlike in the case of standard EW experiments –
have been avoided in the present experiments.
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Experimental demonstration of MDI-EW under noise

We have introduced noise (theoretically) in the Bell state
measurement part of both the experiments – not explicitly
considered in the experiments – and verified that the
corresponding separable states get witnessed as separable even
in the presence of noise.

The optical gadgets being used in both the experiments for
the Bell state measurements are mainly: HWP, PBS, and
photo-detectors.

We have taken here lossy PBS by introding white noise. Noisy
HWP has been considered by introducing error in the angle of
rotation of the polarization axis. Noise in the photo-detectors
have been introduced by incorporating detection inefficiency.
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Universal entanglement witness process for two-qubits
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Universal EW operator for two-qubits

In the case of two-qubits, Augusiak et al. [Phys. Rev. A 77,
030301 (2008)] provided a state-independent (i.e., universal)
hermitian operator Wu, acting on (CI 2)⊗4 ⊗ (CI 2)⊗4, such that
Tr[Wuρ

⊗4
AB ] ≡ det(ρTB

AB) ≥ 0 if and only if ρAB is a
(two-qubit) separable state.

A local realization of Wu is of the form:
Wu = (1/24)I256×256 − (1/8)(Ṽ (4) ⊗ (Ṽ (4))T + (Ṽ (4))T ⊗
Ṽ (4)) + (1/6)I4×4 ⊗ (Ṽ (3) ⊗ (Ṽ (3))T + (Ṽ (3))T ⊗ Ṽ (3)) +
(1/8)V (2) ⊗ V (2) − (1/4)I16×16 ⊗ V (2).

Here V (k) is the swap operator:
V (k)(|φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φk〉) = |φk〉 ⊗ |φ1〉 ⊗ . . .⊗ |φk−1〉
and Ṽ (l)’s are permutations in the same subsystems of ρ⊗4.
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Witnessing entanglement in unknown two-qubit state in
MDI way
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Witnessing entanglement in unknown two-qubit state in
MDI way

Assume now that the referee supplies states τ (s) on (CI 2)⊗4 to
Alice and ω(t) on (CI 2)⊗4 to Bob.

And four copies of a unknown two-qubit state ρAB are shared.

Express now: Wu =
∑

s∈S,t∈T βst(τ
(s))T ⊗ (ω(t))T .

For four copies of any two-qubit state σAB : I (µσ⊗4) =
∑

s∈S,t∈T βstµσ⊗4(1, 1|τ (s), ω(t)) = Tr[Wu(σAB)
⊗4]/256.

So, I (µσ⊗4) ≥ 0 iff σ is separable.

Bartkiewicz et al. [PRA 91, 032315 (2015)] provided an
implementation scheme for universally witnessing two-qubit
photon polarization states using Wn – not in MDI way.
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Witnessing NPT-ness of unknown state in any given
bi-partite system in MDI way
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Universally witnessing NPT-ness in MDI way

A two-qudit state ρAB is said to have PPT iff ρTB

AB ≥ 0.
Otherwise it is said to have NPT.

The characteristic eqn. for ρTB

AB :
∑d2

α=0 aαλ
d2−α = 0 where

the coefficients a0, a1, . . ., ad2 are respectively 1,
−∑

i λi = −1,
∑

i>j λiλj = (1/2)(1−∑

i λ
2
i ), . . .

(Newton-Girad formula).

In operational form: a2 = Tr[W2ρ
⊗2
AB ] where

W2 = (1/2)(Id4×d4 − V (2)).

a3 = −(1/6)(1− 3
∑

i λ
2
i + 2

∑

i λ
3
i ) = Tr[W3ρ

⊗3
AB ].

Here W3 = −(1/6)(Id6×d6 − 3Id2×d2 ⊗ V (2) + (Ṽ (3) ⊗
(Ṽ (3))T + (Ṽ (3))T ⊗ Ṽ (3))).

etc. etc.
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Universally witnessing NPT-ness in MDI way (continued)

In order to thus calculate ak in MDI way, k copies of the state
should be shared, and the referee should supply states τ (s)

(ω(t)) from (CI dA)⊗k ((CI dB )⊗k) to Alice (Bob).

By looking at the signs of ak ’s, one can then easily figure out
whether ρ has PPT or NPT.
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Conjecture about non-existence of universal MDI-EW
in higher dimension
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Conjecture

We conjecture that if dAdB > 6, there can not exist one (or a
finitely many) universal entanglement witness which can be
realized in a MDI way: (Conjecture 1)

Note that there is no PPT entangled state whenever
dAdB ≤ 6. So, universally witnessing the NPT-ness of an
arbitrary state ρAB – with dAdB ≤ 6 – in an MDI way is
enough to witness entanglement in ρAB in an MDI way.

The reason behind the aforesaid conjecture is another
conjecture:

There can not exist a universal EW (or, a finitely many EW
operators) for all PPT entangled states of any given bipartite
system: (Conjecture 2).
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Motivation about the second conjecture

Consider a bi-partite quantum system A+ B , described by the
Hilbert space HAB ≡ HA ⊗HB with dimHA = dimHB = d .

DAB ≡ set of all the density matrices of A+ B .

SAB ≡ set of all separable density matrices of A+ B .

PAB ≡ set of all density matrices ρAB of A+ B for which
ρTB

AB ≥ 0.

P̃AB ≡ set of all ρAB in PAB with ρAB being entangled.

Note that PAB is a convex subset of DAB , while SAB is a
convex subset of PAB .

P̃AB is not convex.

PAB = SAB for d = 2.

Thus, for d = 2, P̃AB = φ, the null set.
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Motivation about the second conjecture (continued)

S ′
AB ≡ set of all convex combinations of elements of SAB .

Thus we have: S ′
AB = SAB .

P̃ ′
AB ≡ set of all convex combinations of elements of P̃AB .

Edge state: ρAB in P̃AB is an edge state iff the state
(ρAB + pσAB)/(1 + p) is in SAB for all p ∈ (0, 1] and all
σAB ∈ PAB .

Edge states lie near the boundary of SAB .

Edge states exist for all d ≥ 3.

This implies that P̃ ′
AB and S ′

AB have non-null
overlap: P̃ ′

AB ∩ S ′
AB 6= φ for d ≥ 3.

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai - 600

On witnessing arbitrary bipartite entanglement in measurement device independent way



Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai - 600

On witnessing arbitrary bipartite entanglement in measurement device independent way



Motivation about the second conjecture (continued)

n is any positive integer.

S(n)
AB

′

≡ set of all convex combinations of the states σ⊗n
AB with

σAB ∈ SAB .

P̃(n)′
AB ≡ set of all convex combinations of the states ρ⊗n

AB with
ρAB ∈ P̃AB .

SAnBn
≡ set of all separable states on H⊗n

A ⊗H⊗n
B .

It is most likely that SAnBn
∩ P̃(n)′

AB 6= φ for all n with d ≥ 3
(possibly because of existence of edge states).

Conjecture 3: S(n)
AB

′

∩ P̃(n)′
AB 6= φ for all n with d ≥ 3.

Conjecture 3 is true for n = 1.
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Implication of the 3rd conjecture

Validity of conjecture 3 implies the non-existence of any
hermitian operator WAnBn

: H⊗n
A ⊗H⊗n

B → H⊗n
A ⊗H⊗n

B for
which Tr

[

ρ⊗n
ABWAnBn

]

< 0 for some ρAB ∈ P̃AB together with
Tr

[

σ⊗n
ABWAnBn

]

≥ 0 for all σAB ∈ SAB – irrespective of the
choice of n.

Thus, validity of conjecture 3 implies that there can not exist
a universal EW (or, a finitely many EWs) which can detect
entanglement in all the PPT (bound) entangled states of
A+ B whenever d ≥ 3.

Thus, validity of conjecture 3 automatically implies validity of
conjecture 2, which, in turn, implies the non-existence of a
MDI universal entanglement witness operator for all the PPT
(bound) entangled states of A+ B – validity of conjecture 1.
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Verification of the 3rd conjecture

It appears to be quite difficult to verify conjecture 3 directly.

One may try to verify whether for any given ρAnBn
∈ P̃(n)′

AB ,

there exists some σAnBn
∈ S(n)

AB

′

such that
Tr [OAnBn

ρAnBn
] = Tr [OAnBn

σAnBn
] for a complete set of

linearly independent observables
OAnBn

: H⊗n
A ⊗H⊗n

B → H⊗n
A ⊗H⊗n

B .

Even verification of this one may turn out to be difficult.
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Conclusion
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Conclusion

Based on the knowledge of the dimension of the individual
sub-systems and relying on the supply of several copies of the
state on demand, we provided here a prescription on how to
detect NPT/PPT-ness of an arbitrary bi-partite state in a
measurement device independent way.

In case the bi-partite system is known apriori to be a
two-qubit or a qubit-qutrit system, our method provided a
scheme for universal entanglement detection in a
measurement device independent way.

In case the total dimension of the bi-partite system is higher
than six and in case the unknown bi-partite state has PPT, we
conjecture that its entanglement can not be detected in a
measurement device independent way.
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Conclusion (continued)

Our noise analysis of the Bell-state measurent scenario in both
the experimental demonstrations of MDIEW are in conformity
with the demand of the measurement device independence of
the entanglement witness scheme of Branciard et al. [Phys.
Rev. Lett. 110, 060405 (2013)].
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Thanks!
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