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Quantum Disentanglement

This is a local guantum process.

It is defined on composite system consists of two or more
subsystems, so that resulting state is separable.The
disentangling machine(DM) is then defined as

DM d
pe > P
It assumed to preserve the local properties of the state, by
preserving the state of each subsystem.

pa=TIg (pe): Ty (Pd ]
P = TrA(pe): TrA(pd ]




* An exact universal disentangling process may defined
In two ways.

(i) The process may defined to convert every
entangled input states to some product states.

Pas = Pa® Og
(ii) Disentangling process, that transforms any
entangled input state to some separable states .

Pre = Pre = Zwi/)iA ®pp 5 Tr(p) =Tr(p), T (') =Ty ()



No-Disentanglement Theorem

e Exact universal disentangling machine
doesn’t exist in either process.

. Hence disentangling process is defined to
be either state-dependent exact
disentanglement or it can be universal
inexact disentanglement.



Results on state-dependent exact
disentanglement

* Any set of perfectly distinguishable states can be
disentangled.

* Any set of states with identical reduced density
matrices can be disentangled.

* Any set of maximally entangled states can be
disentangled.



Inexact Universal Disentanglement

* An inexact universal disentangling machine can
disentangle any entangled state, and for which
the local system are related by the reduction
factors n, and ng as

Trs(pd)=nApA+(l_nAle

2

TrA(pd ): T8 Pg "‘(1_2778 jIB

 Where the reduction factors are independent of
the initial entangled stateand  0<y#,,n; <1




Universal Disentangling Machine

* Suppose two parties A and B share an
entangled state of two qubit system given by

|)=a |00)+ B |11), where |a|?+ |B|%=1.

* A disentangling machine will then assumed to
be some unitary operation acting on any one
subsystem with some Machine state or two
Local unitary operation acting of the two
subsystems.



U
U

Local Cloning induces Disentanglement

 Bandyopadhyay et.al. proposed that entanglement of

bipartite system 5-1;8, can be reduced by introducing
local isopropic cloner to any subsystem (Say A).

0)4B) .| M)=2(0),,/0) .| M")+b((0), |1),.. +1),,|0),. ]M")
1),/8) [ M) =al1) 1), M) +5(0), [1) . +11),0) . ) M)

* The process spilt the entanglement of the joint

system between two joint system(H,; and H,5)
each having a less amount of entanglement.



Symmetric Optimal Universal Machine
* If reduction factors are chosen to be equal, i.e.
N, =1g =1 , the final state remain entangled for all

initial state, if > % . Fidelity of cloner is related
with the reduction factor by F =1(1+7)

* |tis possible to disentangle arbitrary pure two-qubit
entangled state, by applying universal isotropic
cloner whose Fidelity E < 2/ in one subsystem.

e |Ifisotropic local cloning machine is applied on both
of the subsystem, then the any pure bipartite state
entangled states can be disentangled, if the common

reduction factor - 1++/3
< e, F<
1< )13 243




Asymmetric Optimal Universal Machine

When the disentangling machine is allowed to
operate locally on both the subsystems, and
reduction factors are not bound to be
equal(asymmetric case) then it is shown that for
optimal disentanglement process the reduction
factors n, and ng satisfy the following relation:

Nallg S %



Disentanglement resulting from
Decoherence Process in Open
System Dynamics

 Decoherence process is the destruction of
guantum interference.

* Disentanglement and Decoherence
phenomena are shown to be connected by
Dodd et.al. for open quantum dynamics. All
possible initial state of the two particle
system become separable after a finite time,
under the evolution process that produce
decoherence of both particles.



Disentangling Capacity of a Joint Unitary

In evolution of pure bipartite system, the Entangling
ET(U,s) and Disentangling (EV(U,g)) Capacity of a

joint unitary U,g are
E"(U)=sup[E(U'|¥))-E(¥))
Y
£-0)=sulE(w)-£0 1)
U’ is the extension of U in the extended Hilbert
space(H’,g=H's,g,) Of bipartite system, introducing
ancillary spaces to both subsystem, |y) be an
arbitrary state of H'.

For any 2x2 unitary ET(U) =E¥(U) whereas from 2x3
dimension the two capacities are not always equal.




Discord

A measure of non-classicality of bipartite correlation.
Consider a composite quantum system

H,,=H,®H,, dim(H,)=d,, dim(H,)=d,

The total correlation of a density matrix p,; of the
composite system is characterized by the quantum
mutual information

I{p) = H(py) + Hlpg) - H(p), (1)
where H(.) is the von Neumann entropy function.
p, and pg are local subsystems of parties A and

B respectively. where H(.) is the von Neumann
entropy function.

p, and p, are local subsystems of parties A and
B respectively.



* A generalization of the classical conditional
entropy is H(pg,,), where pg, is the state of the
subsystem B given a measurement on subsystem
A. By optimizing over all possible measurements
in A, we get an alternative version of mutual
information as

. QA(p):H(pB)_min{EK}ZIDKH(pB|K) . (2)

po = T (E, ®1gp)
« Where = 2K Tr(E, ® l;p) isthe state of B

 conditioned on outcome k of the measurement
performed on subsystem A and {E,} represents
the set of positive operator valued
measure(POVM) elements.



 Then the discrepancy between the two
measures of information defined above in
equations (1) and (2) will be termed as
Quantum Discord :

Dalp) = I(p) = Qulp) (3)
e States having highly mixed in this sense,
though not have much entanglement, but
may used as resource for performing some
information theoretic tasks exponentially
faster than any classical algorithm.

* Even separable states having this resource
are shown to be powerful than classical
system.



* The discord is always non-negative.

* The value of this measure reaches zero for
classically correlated states.

* Discord is not a symmetric quantity D,(p) and
Dg(p) denotes the left discord and right discord

of p.
* If D,(p) = Dg(p) = O, then the state p is said to
be completely classically correlated.



Classical Quantum States

The states of a quantum system with zero value of quantum
discord, are known as Classical-Quantum states.

A state p has zero-discord if and only if there exist a von
Neumann measurement {Hk :‘Wk><'7”k ; k}

such that,  S™([1, @ 1, )p(IT, ® 1) = p @)
K

The zero-discord state is of the form
Pas =D PJvi (v | ® p
Kk

Where {It//k>} is some orthonormal basis set, p, are the
quantum states of subsystem B and p, are non-negative
numbers such that 2>,p, = 1.

The set of zero-discord states is not convex.



We consider the singular value decomposition of p as
diag[c, c, ... ]. Singular value decomposition defines
new basis in local Hilbert-Schmidt spaces

Sn — Zunn'ph' |:n — ZWmm'Bm'

The state p in the new basis is of the form
L
p=>rcS,®F,
n=1

where L is the rank of correlation matrix R (i.e., the
number of non-zero eigenvalues c,).

The necessary and sufficient condition (4) becomes

Y IS, =S,; n=12,---L
K

This is equivalent to : [Sn,l‘[k]: 0:Vk,n



This means that the set of operators {S,} have
common eigenbasis defined by the set of projectors
{Il}. Therefore, the set {I1,} exists if and only if:

S.,S.]=0 Vv mn=1.2,---,L
By checking a maximum of -1/, number of these

commutators, one may identify the zero discord
states, where L = rank(R) < min{d % , d;*}.

Now zero-discord state p is a sum of d, product
operators. This bounds the rank of the correlation
tensorto L <d,.

Thus, the rank of the correlation tensor is itself the
discord witness: If L > d,, the state has a non-zero
discord.



Geometric Discord

 Geometric discord of a quantum state is defined as
the minimum distance from the set((},) of states
with zero quantum discord

D, (p):=min|p— 4],

where | |.] |, is the Hilbert Schmidt distance.
e Geometric discord can also be defined as

p—T1(p)

2
2

De (p):=min

minimization is taken over all local von Neumann
measurement {I1*} on party X.



Geometric Discord of Two-Qubit system

* Any state of two-qubit system can be expressed as

pAle L®L+XAQ1, +]1 ®y%+2ti®i

A ij 7

. wherek (A, A0,A5) 5 A, are generators of SU(2).
e Let T= {tij} and kmax is maximum eigenvalue of the

matrix XX'+TT'
* Geometric Discord of two-qubit system can be

descrlbedas
SRR AL R




Coherence Vector Representation of
Bipartite System

* |In coherent vector representation a bipartite state
P ag Of composite system Ha®Hs with dim(H,)=d,
and dim(H.)=d; , can be expressed as

P = 1, ®T, +— dilxi(/z,* ®1, )+ iyl(l ® Ay )
AdB B i=1 A i=1
dA—ldB—l
;;KU(/I ® A, )

where coherent vectors
for reduced density matrix p, and pg are

(X1’ Xzi'”)t :tr(pAB/lA ®IB)’ (Y1’ y21”')t :tr(pABIA ®/IB)



* The generators of SU(d,) and SU(d;) are denoted as

ﬂv,ai and ﬂBj respectively. |, and I; are identity
vectors of subsystem A and B. Also, a matrix with

elements
Ki :’[r‘(pAB}LAﬁ ®/IBJ_)

are required for this representation.
The triplet {x, Y, K} define a tensor as,

A =KK"' = y*xx'

e This tensor is used to characterize the correlations
of the bipartite state p,g .



Condition for p being product state

* A bipartite state p,; is a product state, if
and only if the criterion tensor A=0 or

rank(A)=0.

CONDITION FOR P BEING ZERO-DISCORD STATE

- A bipartite state p,p 1s a state of zero
discord, if and only if the criterion
tensor A satisfies rank( A)S d,—1-



Local Quantum Uncertainty

* For a bipartite quantum state p,;, Girolami et.al. give
us the concept of local quantum uncertainty(LQU). It

is defined :
is defined as U;\:mm I(pAB’KA)
KA

* The minimization is performed over all non-
degenerate spectrum A(characterized as local
maximally informative observable)

KAN=KA® |



LQU as Measure of Bipartite Quantumness

 The LQU quantifies the minimum amount of
uncertainty in a quantum state. Non-zero value of
this quantity for a bipartite state p,; indicates the
non-existence of any quantum certain observable for

Pas-
* This quantity vanishes for all zero discord state w.r.t.
measurement on party A.

e LQU isinvariant under local unitary operation.

* It reduces to entanglement monotone for pure state.
For pure bipartite states LQU reduces to linear
entropy of reduced subsystems.



From the analytical formula for local quantum
uncertainty it has been shown that the whole
class of 6QE invariant states (including

Werner and Isotropic Class) in n & n systems,
possess quantum correlation.



Effect of Universal Isotropic
Disentanglement Process on
Geometric Discord of Two-Qubit State

* For a two qubit state

- :% W@ 1y + X, @1 +1,® Y+ Kydy @,
| 1]
e Geometric Discord is 1

D2 (ps) == X + K[ Ko

A

where K is the matrix, present in coherent vector
representation of the state and k,_, is the largest

eigenvalue of the matrix yy! + KK



 Under an universal isotropic disentanglement
process initial state p,5 changes to the final state

1| 1 ®Tg +77,X XA, QI +1, @y,
IOAB:4 +Z”A”BKUAA ®ABJ-

where 7, , 17z are the reduction factors.

* The Geometric Discord of the final state is
, 1
02 ()= 4 WA + I K

e where K’ __is maximum eigenvalue of the matrix
max

77AXX T 77A77|3 KK



Optimal Disentanglement

* |tis known that for the case of optimal
asymmetric disentanglement process

Nallg S %

* The criterion tensor A’ for p',z is given by

N = WAWB(KKt yZXX) Nalle A



* Final state p’,g is @ product state if and only if
intial state p,g is a product state.

* p',gis azero discord state if and only if p,g is a
zero discord state.

* The above two findings lead us to conclude
that
Optimal Disent
Process is v local process that
presevve exactly gervo- discovds
state.



All the non-classical correlations that have
zero value for only zero discord states in two
qubit systems, quantum disentanglement is
the only local process that preserves their
structures. For example:

Quantum Discord,
Geometric Discord,
Relative Entropy of discord,
Local Quantum Uncertainty
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