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Quantum Disentanglement  

• This is a local quantum process. 

• It is defined on composite system consists of two or more 
subsystems, so that resulting state is separable.The 
disentangling machine(DM) is then defined as 

 

•     

• It assumed to preserve the local properties of the state, by 
preserving the state of each subsystem. 
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• An exact universal disentangling process may defined 

in two ways.  

       (i) The process may defined to convert every  

entangled input states to some product states.  

 

       (ii) Disentangling process, that transforms any 

entangled input state to some separable states . 
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No-Disentanglement Theorem 

•     Exact universal disentangling machine 
doesn’t exist in either process.  

•      Hence disentangling process is defined to 
be either state-dependent exact 
disentanglement or it can be universal 
inexact disentanglement. 



Results on state-dependent exact 
disentanglement 

• Any set of perfectly distinguishable states can be 
disentangled. 

• Any set of states with identical reduced density 
matrices can be disentangled. 

• Any set of maximally entangled states can be 
disentangled. 



Inexact Universal Disentanglement 

• An inexact universal disentangling machine can 
disentangle any entangled state, and for which 
the local system are related by the reduction 
factors ηA and ηB as 

 

 

 

 

• Where the reduction factors are independent of 
the initial entangled state and   
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Universal Disentangling Machine 

• Suppose two parties A and B share an 
entangled state of two qubit system given by      

       |ψ = α |00+ β |11, where |α|2 + |β|2= 1.     

• A disentangling machine will then assumed to 
be some unitary operation acting on any one 
subsystem with some Machine state or two 
Local unitary operation acting of the two 
subsystems. 

 



Local Cloning induces Disentanglement 

• Bandyopadhyay et.al. proposed that entanglement of 
bipartite system HAB, can be reduced by introducing 
local isopropic cloner to any subsystem (Say A).  

 

 

 

• The process spilt the entanglement  of the joint 
system between two joint system(HA’B and HA’’B ) 
each having a less amount of entanglement.   
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Symmetric Optimal Universal Machine 
• If reduction factors are chosen to be equal, i.e. 

                         , the final state remain entangled for all 

 initial state, if                 . Fidelity of cloner is related 
with the reduction factor by  

• It is possible to disentangle arbitrary pure two-qubit 
entangled state, by applying universal isotropic 
cloner whose Fidelity                    in one subsystem. 

•  If isotropic local cloning machine is applied on both 
of the subsystem, then the any pure bipartite state 
entangled states can be disentangled, if the common 
reduction factor  
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Asymmetric Optimal Universal Machine 

• When the disentangling machine is allowed to 
operate locally on both the subsystems, and 
reduction factors are not bound to be 
equal(asymmetric case) then it is shown that for 
optimal disentanglement process the reduction 
factors ηA and ηB satisfy the following relation: 

 

 3
1BAηη



Disentanglement resulting from  
Decoherence Process in Open 

System Dynamics 

• Decoherence process is the destruction of 
quantum interference.  

• Disentanglement and Decoherence 
phenomena are shown to be connected by 
Dodd et.al. for open quantum dynamics. All 
possible initial state of the two particle 
system become separable after a finite time, 
under the evolution process that produce 
decoherence of both particles. 

 



Disentangling Capacity of a Joint Unitary 

    In evolution of pure bipartite system, the Entangling 
E↑(UAB)  and Disentangling (E↓(UAB)) Capacity of a 
joint unitary UAB are  

 

 

 

     U’ is the extension of U in the extended Hilbert 
space(H’AB=H’AaBb) of bipartite system, introducing 
ancillary spaces to both subsystem,  | be an 
arbitrary state of H’. 

    For any 22 unitary E↑(U) =E↓(U) whereas from 23 
dimension the two capacities are not always equal. 
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Discord 
• A measure of non-classicality of bipartite correlation. 
• Consider a composite quantum system 

 
 

• The total correlation of a density matrix AB of the 
composite system is characterized by the quantum 
mutual information   

•                      I(ρ) = H(ρA) + H(ρB) − H(ρ) ,       (1) 
•  where  H(.)  is the von Neumann entropy function. 
•  ρA   and  ρB   are local subsystems of parties A and 

B respectively. where  H(.)  is the von Neumann 
entropy function. 

•  ρA   and  ρB   are local subsystems of parties A and 
B respectively. 

BBAABAAB dHdHHHH  )dim(  , )dim(  , 



• A generalization of the classical conditional 
entropy is H(ρB|A), where ρB|A is the state of the 
subsystem B given a measurement on subsystem 
A. By optimizing over all possible measurements 
in A, we get an alternative version of mutual 
information as 

•                                                                     
•                                                                      ,    (2) 

 
 

• Where                                               is the state of B 
 

•     conditioned on outcome k of the measurement 
performed on subsystem  A and {Ek} represents 
the set of positive operator valued 
measure(POVM) elements.  
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• Then the discrepancy between the two 
measures of information defined above in 
equations (1) and (2) will be termed as 
Quantum Discord : 

              DA(ρ) = I(ρ) − QA(ρ)                           (3) 

• States having highly mixed in this sense, 
though not have much entanglement, but 
may used as resource for performing some 
information theoretic tasks exponentially 
faster than any classical algorithm. 

• Even separable states having this resource 
are shown to be powerful than classical 
system. 



• The discord is always non-negative. 

• The value of this measure reaches zero for 
classically correlated states. 

• Discord is not a symmetric quantity DA(ρ) and 
DB(ρ) denotes the left discord and right discord 
of ρ . 

• If DA(ρ) = DB(ρ) = 0 , then the state ρ is said to 
be completely classically correlated. 

 

 



Classical Quantum States 
• The states of a quantum system with zero value of quantum 

discord, are known as Classical-Quantum states. 

• A state ρ has zero-discord if and only if there exist a von 
Neumann measurement 

    such that,   

                                                                                                           (4) 

• The zero-discord state is of the form  

 

 

• Where              is some orthonormal basis set, ρk are the 
quantum states of subsystem B and pk are non-negative 
numbers such that    kpk = 1.  

• The set of zero-discord states is not convex. 
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• We consider the singular value decomposition of  as 
diag[c1, c2, . . . ]. Singular value decomposition defines 
new basis in local Hilbert-Schmidt spaces 

                                   ,      
  
 

• The state ρ in the new basis is of the form  
 
 

   
       where L is the rank of correlation matrix R (i.e., the 

number of non-zero eigenvalues cn). 
• The necessary and sufficient condition (4) becomes  

 
 

• This is equivalent to : 
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• This means that the set of operators {Sn} have 
common eigenbasis defined by the set of projectors 
{k}. Therefore, the set {k} exists if and only if: 

 

• By checking a maximum of L(L − 1)/2 number of these 
commutators, one may identify the zero discord 
states, where L = rank(R) ≤ min{dA

2 , dB
2 }. 

• Now zero-discord state ρ is a sum of dA product 
operators. This bounds the rank of the correlation 
tensor to L ≤ dA.  

• Thus, the rank of the correlation tensor is itself the 
discord witness: If L > dA, the state has a non-zero 
discord. 
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Geometric Discord 

• Geometric discord of a quantum state is defined as 
the minimum distance from the set(0) of states 
with zero quantum discord 

 

 

   where ||.||2 is the Hilbert Schmidt distance. 

• Geometric discord can also be defined as 

 

 

minimization is taken over all local von Neumann 

measurement {X} on party X.  
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Geometric Discord of Two-Qubit system 

• Any state of two-qubit system can be expressed as 
 

 

 

•  where =(1,2,3)t  ;  i are generators of SU(2).  

• Let  T={tij}  and              is maximum eigenvalue of the 

 matrix                         

•  Geometric Discord of two-qubit system can be 
described as 
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Coherence Vector Representation of 
Bipartite System 

• In coherent vector representation a bipartite state 
AB of composite system                 with                     
and                         , can be expressed as  

 

 

 

 

                                                       where coherent vectors 
for reduced density matrix A and B are 
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• The generators of SU(dA) and SU(dB) are denoted as 

            and           respectively.  IA and IB are identity 
vectors of subsystem  A and B. Also, a matrix with 
elements 

 

are required for this representation.  

The triplet                         define a tensor as, 

 

 

•  This tensor is used to characterize the correlations 
of the bipartite state  AB . 
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Condition for  being product state 

• A bipartite state AB is a product state, if 
and only if the criterion tensor =0 or 
rank()=0. 

CONDITION FOR  BEING ZERO-DISCORD STATE 

• A bipartite state AB is a state of zero 

discord, if and only if the criterion 

tensor  satisfies                           .   1Λ  Adrank



Local Quantum Uncertainty 

• For a bipartite quantum state ρAB, Girolami et.al. give 
us the concept of local quantum uncertainty(LQU). It 
is defined as  

 

• The minimization is performed over all non-
degenerate spectrum Λ(characterized as local 
maximally informative observable) 

 

 

 A

AB
K

A KρIU , min
Λ

Λ 

IKK A  ΛΛ



LQU as Measure of Bipartite Quantumness 

• The LQU quantifies the minimum amount of 
uncertainty in a quantum state. Non-zero value of 
this quantity for a bipartite state  ρAB  indicates the 
non-existence of any quantum certain observable for  
ρAB. 

• This quantity vanishes for all zero discord state w.r.t. 
measurement on party A.  

• LQU is invariant under local unitary operation.  

• It reduces to entanglement monotone for pure state. 
For pure bipartite states LQU reduces to linear 
entropy of reduced subsystems.  



   From the analytical formula for local quantum 
uncertainty it has been shown that the whole 
class of O⊗O  invariant states (including 
Werner and Isotropic Class) in  n ⊗ n systems, 
possess quantum correlation. 



Effect of Universal Isotropic 
Disentanglement Process on 

Geometric Discord of Two-Qubit State 
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• Geometric Discord is  
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• Under an universal isotropic disentanglement 
process initial state AB changes to the final state 

 

 

 

 where  A   , B  are the reduction factors.  

• The Geometric Discord of the final state is 

 

 

• where  kmax is maximum eigenvalue of the matrix 
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Optimal Disentanglement 

 

• It is known that for the case of optimal 
asymmetric disentanglement process 

 

• The criterion tensor  for AB is given by 
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• Final state AB is a product state if and only if 
intial state AB is a product state. 

• AB is a zero discord state if and only if AB is a 
zero discord state. 

• The above two findings lead us to conclude 
that 

              Optimal Disentanglement 

Process is a local process that 

preserve exactly zero discord 

state. 



• All the non-classical correlations that have 
zero value for only zero discord states in two 
qubit systems, quantum disentanglement is 
the only local process that preserves their 
structures. For example:    

• Quantum Discord,  

• Geometric Discord,  

• Relative Entropy of discord,  

• Local Quantum Uncertainty 
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