Parton Shower Basics

Satyajit Seth

Discussion Meeting on Radiative Corrections

Institute of Physics, Bhubaneswar

March 5-10, 2014

Master Formula

$$
\sigma_{X}=\sum_{a, b} \int d x_{1} d x_{2} f_{a}\left(x_{1}, \mu_{F}^{2}\right) f_{b}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(x_{1}, x_{2}, \alpha_{s}\left(\mu_{R}^{2}\right), \frac{Q^{2}}{\mu_{F}^{2}}, \frac{Q^{2}}{\mu_{R}^{2}}\right)
$$

- PDF: extracted from experiment, using evolution from theory
- $\hat{\sigma}_{a b \rightarrow X}$: short distance partonic cross section, perturbative behaviour
- Expansion over α_{s} : gives LO, NLO, NNLO and so on

Cross-section Calculation

$$
\begin{aligned}
{[d \sigma]_{2 \rightarrow n} } & =\frac{|\mathcal{M}|^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} d \Phi_{n} \\
& =\frac{|\mathcal{M}|^{2}}{2 \sqrt{\lambda\left(E_{c m}^{2}, m_{1}^{2}, m_{2}^{2}\right)}} d \Phi_{n}
\end{aligned}
$$

Integrated it gives collision rate:

$$
N=\sigma \int \mathcal{L}(t) d t
$$

Källén Function:

$$
\lambda\left(a^{2}, b^{2}, c^{2}\right)=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
$$

n-body Phase Space

$$
d \Phi_{n}=\left[\prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}\right](2 \pi)^{4} \delta^{(4)}\left(p_{0}-\sum_{i=1}^{n} p_{i}\right)
$$

- a general and efficient way of phase space parametrisation is required due to large number of dimensions
- analytical methods become too complicated when different CUTS are applied on the final states
- numerical evaluation of the integrations are necessary
- however, δ-functions cannot be integrated numerically
- δ-function integrations are to be done analytically by choosing a set $\left\{p_{i}\right\}$, such that δ-function relation is already satisfied
- no other alternative than to calculate at least $d \Phi_{2}$ and use it recursively to calculate $d \Phi_{n}$

2-body Phase Space

$$
d \Phi_{2}=\frac{1}{16 \pi^{2}} \frac{|\vec{p}| d \Omega}{E_{1} E_{2}}
$$

- with this relation in hand, we'll factorise 3-body phase space
- we'll use that relation recursively to factorise n-body phase space

Factorisation of 3-body Phase Space

$$
d \Phi_{3}\left(P ; p_{1}, p_{2}, p_{3}\right)=d m_{23}^{2}\left[d \Phi_{2}\left(P ; p_{1}, p_{23}\right)\right]\left[d \Phi_{2}\left(p_{23} ; p_{2}, p_{3}\right)\right]
$$

Factorisation of n-body Phase Space

$$
\begin{aligned}
d \Phi_{n}\left(P ; p_{1}, p_{2}, \ldots, p_{n}\right)= & d m_{23 \ldots n}^{2}\left[d \Phi_{2}\left(P ; p_{1}, p_{23} \ldots n\right)\right] \\
& \times\left[d \Phi_{n-1}\left(P ; p_{2}, p_{3}, \ldots, p_{n}\right)\right]
\end{aligned}
$$

- adaptation of numerical techniques is necessary

Monte Carlo Integration

$$
I=\int_{x_{1}}^{x_{2}} f(x) d x
$$

- Mean Value theorem: basis of Monte Carlo integrations
- Draw N sample points uniformly

$$
\begin{array}{r}
I_{N}=\left(x_{2}-x_{1}\right) \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) \\
V_{N}=\left\{\left(x_{2}-x_{1}\right)^{2} \frac{1}{N} \sum_{n=1}^{N}\left[f\left(x_{n}\right)\right]^{2}\right\}-I_{N}^{2}
\end{array}
$$

Central Limit Theorem

$$
I=I_{N} \pm \sqrt{V_{N} / N}
$$

- convergence is slow: $1 / \sqrt{N}$
- error estimation is easy
- errors do not depend on the number of dimensions
- improvement in the result can be controlled by minimizing V_{N}
- optimal case: $f(x)=$ constant $\Longrightarrow \quad V_{N}=0$

Importance Sampling

$$
I=\int_{x_{1}}^{x_{2}} \frac{f(x)}{p(x)} p(x) d x
$$

- method of minimizing V_{N}
- it corresponds to change of variables
- choose $p(x)$ in such a way that $\frac{f(x)}{p(x)} \sim$ constant
- error is now determined by $\operatorname{Var}(f / p)$
- $p(x)$ is restricted to become a + ve valued function and can be normalised to unity
- $p(x)$ might be interpreted as probability density function \Longrightarrow NON-uniform distribution of sample points

Drawback

Need to know a lot about $f(x)$ before starting the integration!

Adaptive Importance Sampling

An algorithm which learns about the integrand as it proceeds.

- If $p(x)=\frac{|f(x)|}{\int|f(x)| d x}$, the $\operatorname{Var}(f / p)$ vanishes.

Example: VEGAS

- Learns about the integrand during the integration
- Uses numerical step functions which comes closer and closer to the true integrand
- Bins are of equal area
- Starts by sub-dividing the integration space into rectangular grid
- Performs integration in each sub-spaces
- These results are then used to adjust the grid for next iteration

Multi Channel Integration

- MC leads to poor results when $f(x)$ has sharp peaks
- Remapping of variables can make the integrand flat
- Variable transformation is difficult when $f(x)$ contains different peaks in different regions

Solution: use different transformation for different peaks

$$
p(x)=\sum_{i=1}^{n} \alpha_{i} p_{i}(x) \quad \text { with } \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

Drawback

- all $p_{i}(x)$ functions are to be calculated to determine $p(x)$
- time consuming
- relative weight $\left(\alpha_{i}\right)$ of each channel changes to minimize variance

Solution: Write the integrand in terms of a basis of n functions f_{i} such that,

$$
\begin{aligned}
f & =\sum_{i=1}^{n} f_{i} \\
\Longrightarrow I & =\sum_{i=1}^{n} I_{i}
\end{aligned}
$$

Towards Event Generation

Example: $u \bar{u} \rightarrow g g$

- Three very different pole structures contributing to the same matrix element
- Basis: $f_{i}=\frac{\left|A_{i}\right|^{2}}{\sum_{i}\left|A_{i}\right|^{2}}\left|A_{\text {total }}\right|^{2}$
- Choice of such basis divides integrations into pieces, based on diagrams
- No need to calculate weight functions from other channels
- Errors add in quadrature \Longrightarrow no extra CPU cost
- Parallel in nature
- Interference terms never create new peaks

Event Selection

(1) pick x at random
(2) calculate $f(x)$
(3) pick y at random, where $0<y<f_{\max }$
(9) If $f(x)>y \Longrightarrow$ Accept
(5) Otherwise Reject

Weighted Events: Same number of events in areas of phase space with very different probabilities

Unweighted Events: No. of events \propto probability of phase space area

Parton Shower

- Particles are by definition HARD, while calculating ME
- Accelerated particles radiate
- PS evolve the hard process down to the hadronisation scale
- They generate high multiplicity final states, which can readily be converted into hadrons
- In practice, $P P \rightarrow X \Longrightarrow P P \rightarrow X+\mathrm{n}$ jets
- Logarithmically dominant contributions are universal

Collinear Factorisation

$$
d \sigma_{n+1}=d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{s}}{2 \pi} \hat{P}_{b a}(z)
$$

- This relation appears after integration over azimuthal angle ϕ
- t : evolution parameter
- \hat{P} : unregulated splitting functions
- z: energy fraction E_{b} / E_{a}

Iteration of Parton Branching

$$
d \sigma_{n+2}=d \sigma_{n} \frac{d t}{t} d z \frac{d t^{\prime}}{t^{\prime}} d z^{\prime}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \hat{P}_{b a}(z) \hat{P}_{d b}\left(z^{\prime}\right)
$$

- $a(t) \rightarrow b(z)+c$
- $b\left(t^{\prime}\right) \rightarrow d\left(z^{\prime}\right)+e$
- Markov chain process: probability of the next branching depends only on the present values of random variables
- Branching tree: $Q^{2} \gg t_{1} \gg t_{2} \gg \ldots \ldots \gg Q_{0}^{2}$

Sudakov Factor

$$
\Delta\left(Q_{1}, Q_{2}\right)=\exp \left[-\frac{\alpha_{s}}{2 \pi} \int_{Q_{2}^{2}}^{Q_{1}^{2}} \frac{d t}{t} \sum_{b} \int_{z_{\min }}^{z_{\max }} d z \hat{P}_{b a}(z)\right]
$$

- Probability of not finding a parton b from a, when evolution parameter varies from Q_{1} to Q_{2}
- Basis of PS Monte Carlo

Parton Shower Monte Carlo

(1) Start the evolution at the (virtual) mass scale t_{0} and momentum fraction $x_{0}=1$
(2) Given a virtual mass scale $\left(t_{1}\right)$ and momentum fraction $\left(x_{1}\right)$, generate the scale $\left(t_{2}\right)$ of the next emission by solving: $\Delta\left(t_{1}, t_{2}\right)=R$
(3) If $t_{2}<t_{\text {cut }}$, shower has been finished
(9) Otherwise, generate $z=x_{2} / x_{1}$ with a distribution proportional to $\left(\frac{\alpha_{s}}{2 \pi}\right) \hat{P}(z)$
(5) For each emitted particle, iterate steps $2-4$ until branching stops

Angular Ordering

- Different MCs' uses different evolution parameters
- $p_{a}^{2}=z(1-z) \theta^{2} E_{a}^{2}$
- $p_{T, a}^{2}=z^{2}(1-z)^{2} \theta^{2} E_{a}^{2}$
- $\tilde{t}_{a}=\theta^{2} E_{a}^{2}$
- All of them have same angular behaviour
- Studing SOFT emission may give extra information on the proper choice of evolution parameter

Effects of Angular Ordering

- Radiation happens only for angles smaller that the colour connected opening angle
- $|M|^{2}$ gets factorised as if the is no interference
- Angles will become smaller and smaller while this construction is iterated
- Once the gluon is far enough from the two quark legs, it will not resolve their individual colour charges, but only feel the combined charges
- This screening leads to an additional suppression factor

Angular ordering is automatically satisfied in P_{T} and θ ordered showers

Limitations of Parton Shower

- It is based on soft/collinear approximation
- It cannot describe the hard radiation correctly
- Neither of the available codes give warning while they are used outside their range of validity

Solution:

- Use ME to describe the hard radiation together with PS
- ME+PS: calculate higher multiplicity ME to describe the hard part and merge them to PS (CKKW, MLM)
- NLO+PS: start from NLO corrected results for describing the hard part and match them with PS (MC@NLO, POWHEG)

ME+PS: Limitations of naive approach

- Partons far away can re-enter into the cone due the more radiation
- Relative weights of MEs' with different multiplicities are unspecified
- No secific way to determine the size of the cone
- Final event sample should be independent of cone size

K_{T} Algorithm

(1) Define parton-beam distance: $d_{i}=p_{T, i}^{2}$
(2) Define parton-parton distance: $d_{i j}=\min \left(p_{T, i}^{2}, p_{T, j}^{2}\right) R_{i j}^{2}$
(3) Define a stopping scale $d_{\text {stop }}$ below which clustering is not required
(9) If $d_{i j}<d_{\text {stop }} \Longrightarrow$ two partons are close, combine them
(3) If $d_{i}<d_{\text {stop }} \Longrightarrow$ partons are close to the beam, reject them
(0) Iterate the whole process until partons are left far apart

CKKW Algorithm

(1) Compute the probabilities: $P_{i}^{(0)}=\frac{\sigma_{i}^{(0)}}{\sum_{i=1}^{n} \sigma_{i}^{(0)}}$
(2) Choose a multiplicity $0 \leq i \leq n$ with probability $P_{i}^{(0)}$
(3) Use the matrix element M_{i} to generate $X+i$-jet kinematic configuration for unweighted events
(9) Use K_{T} algorithm to cluster the partons to reach to $X+i$-jet configuration
(3) Apply coupling re-weighting factor
(0) Apply Sudakov re-weighting factor
(3) Unweight again the hard configuration: accept it if the product of coupling \& Sudakov reweighting factors is larger than a random number, otherwise start from 2.

NLO+PS: Necessicity

- K-factors: The only way to include k-factor consistently and use the information in detector simulation
- Shapes: Observable shape has NLO correction and that has an impact on acceptance studies in general
- Theoretical Systematics: Scale dependency can be computed in a meaningful way
- Predictive Power: These MC tools can be used as a tool for "precision" physics

MC@NLO Formalism

- Calculate FO NLO first, removing all divergences
- Invoke PS after that
- Incorporate improved substraction scheme so that the $\mathcal{O}\left(\alpha_{s}\right)$ hard part remains unaffected while using PS

References:

1.

http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf
2. http://pdg.lbl.gov/2013/reviews/rpp2012-rev-mc-event-gen.pdf
3. http://home.thep.lu.se/~torbjorn/preprints/th6275.pdf
4. JHEP 05 (2002) 046 [hep-ph/0112284]
5. JHEP 06 (2002) 029

Thank You!

