Methods for multi-loop computations

Lorenzo Tancredi
Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

Lecture 3

Differential Equations for MIs

- Introduction:

1. Back to the MIs
2. Choice of basis \rightarrow physical cuts

- Differential Equations method (DE):

1. Derive the equations
2. Decoupling
3. Choice of variables

- Canonical (Henn-like) differential equations

Introduction

- We have seen how a physical amplitude can be reduced to MIs
- Two-loop 4-point functions: from ≈ 1000 Ints $\rightarrow \approx 10 \mathrm{MIs}$

Problems remain:

1. How do we compute them?
2. Mls form a basis, choice is not unique !
3. \rightarrow How to choose them?
4. Are there basis choices that are better than others?

Different methods have been developed for computing Feynman Integrals:

1. Feynman Parameters
2. Mellin Barnes representations
3. Dispersion relations see g-2 of electron at 3 loops !
4. Differential Equations (DE).

We will focus our attention on Differential Equations!

Differential Equations (for Feynman integrals!)

Example:

Let us consider the case of the 1-loop massive Sunrise
$S\left(d ; p^{2}, m^{2}\right)=\xrightarrow{p^{2}} \longrightarrow \int \mathfrak{D}^{d} k \frac{1}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}$

It must be a scalar function only of the ratio p^{2} / m^{2}
we could put for simplicity: $m^{2}=1, p^{2}=z$, but it is clearer to keep all variables for the moment

Idea:

- Since I know the integral must depend only on p^{2}, can I "by-pass" the direct loop-integration?
- In other words, can I write a dispersion relation for $S\left(d ; p^{2}\right)$ in p^{2} ? (sort of...)

If I had:

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=f\left(p^{2}\right) \quad \text { plus } \quad S\left(d ; p_{0}^{2}\right)=N_{d}
$$

then I could write

$$
S\left(d ; p^{2}\right)=N_{d}+\int_{p_{0}^{2}}^{p^{2}} d t f(t) \quad \rightarrow \quad \text { Bingo!! }
$$

Differentiating respect to p^{2} amounts to differentiating respect to p^{μ} !

$$
\begin{aligned}
p^{2} & =p^{\mu} p_{\mu} \longrightarrow \frac{\partial p^{2}}{\partial p_{\mu}}=2 p^{\mu} \\
p_{\mu} \frac{\partial}{\partial p_{\mu}} & =p_{\mu} \frac{\partial p^{2}}{\partial p_{\mu}} \frac{\partial}{\partial p^{2}} \longrightarrow \frac{\partial}{\partial p^{2}}=\frac{1}{2 p^{2}}\left(p_{\mu} \frac{\partial}{\partial p_{\mu}}\right)
\end{aligned}
$$

This differential operator contains only the external momentum!
I can apply it directly on the integral representation of the sunrise !!

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=\frac{1}{2 p^{2}}\left(p_{\mu} \frac{\partial}{\partial p_{\mu}}\right) \int \mathfrak{D}^{d} k \frac{1}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}
$$

Using the fact that in dimensional regularisation integrals are always convergent I can act with the operator directly on the integrand!

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=\frac{1}{2 p^{2}} \int \mathfrak{D}^{d} k\left(p_{\mu} \frac{\partial}{\partial p_{\mu}}\right) \frac{1}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}
$$

This is very similar to an IBP !

1. Acts in the same way as IBPs \rightarrow doesn't change the topology!
2. The result can be reduced to MIs again !!

Performing the derivatives we find

$$
\frac{\partial}{\partial p_{\mu}} \frac{1}{\left((k-p)^{2}+m^{2}\right)}=-\frac{1}{\left((k-p)^{2}+m^{2}\right)^{2}}\left[2\left(p^{\mu}-k^{\mu}\right)\right]
$$

so that

$$
\left(p_{\mu} \frac{\partial}{\partial p_{\mu}}\right) \frac{1}{\left((k-p)^{2}+m^{2}\right)}=\frac{2 k \cdot p-2 p^{2}}{\left((k-p)^{2}+m^{2}\right)^{2}}
$$

and using

$$
2 k \cdot p=\left(k^{2}+m^{2}\right)-\left((k-p)^{2}+m^{2}\right)+p^{2}
$$

we finally find
$\frac{d}{d p^{2}} \frac{1}{\left((k-p)^{2}+m^{2}\right)}=\frac{\left(k^{2}+m^{2}\right)}{\left((k-p)^{2}+m^{2}\right)^{2}}-\frac{1}{\left((k-p)^{2}+m^{2}\right)}-\frac{p^{2}}{\left((k-p)^{2}+m^{2}\right)^{2}}$

Let us introduce this notation:

$$
\mathcal{I}\left(n_{1}, n_{2}\right)=\int \mathfrak{D}^{d} k \frac{1}{\left(k^{2}+m^{2}\right)^{n_{1}}\left((k-p)^{2}+m^{2}\right)^{n_{2}}}, \quad S\left(d ; p^{2}\right)=\mathcal{I}(1,1)
$$

Then the derivative reads

$$
\frac{d}{d p^{2}} \mathcal{I}(1,1)=\frac{1}{2 p^{2}}(\mathcal{I}(0,2)-\mathcal{I}(1,1))-\frac{1}{2} \mathcal{I}(1,2)
$$

But now these integrals can be reduced to the two MIs!! (see Lecture 1)

$$
\mathcal{I}(1,0)=T(d ; m), \quad \mathcal{I}(1,1)=S\left(d ; p^{2}\right)
$$

The reduction identities read:

$$
\begin{aligned}
& \mathcal{I}(0,2)=\mathcal{I}(2,0)=-\frac{(d-2)}{2 m^{2}} T(d ; m) \\
& \mathcal{I}(1,2)=-\frac{(d-2)}{2 m^{2}\left(p^{2}+4 m^{2}\right)} T(d ; m)-\frac{(d-3)}{p^{2}+4 m^{2}} S\left(d ; p^{2}\right)
\end{aligned}
$$

with which the differential equation becomes:

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=\frac{1}{2}\left(\frac{(d-3)}{p^{2}+4 m^{2}}-\frac{1}{p^{2}}\right) S\left(d ; p^{2}\right)-\frac{(d-2)}{p^{2}\left(p^{2}+4 m^{2}\right)} T(d ; m)
$$

Linear First Order differential equation for $S\left(d, p^{2}\right)$!

The homogeneous equation reads

$$
\frac{d}{d p^{2}} S_{H}\left(d ; p^{2}\right)=\frac{1}{2}\left(\frac{(d-3)}{p^{2}+4 m^{2}}-\frac{1}{p^{2}}\right) S_{H}\left(d ; p^{2}\right)
$$

which has solution

$$
S_{H}\left(d ; p^{2}\right)=\sqrt{\frac{\left(p^{2}+4 m^{2}\right)^{d-3}}{p^{2}}}
$$

which finally gives for the solution by quadrature

$$
\begin{aligned}
S\left(d ; p^{2}\right) & =-(d-2) T\left(d ; m^{2}\right) \sqrt{\frac{\left(p^{2}+4 m^{2}\right)^{d-3}}{p^{2}}} \\
& \times \int_{p_{0}^{2}}^{p^{2}} d t \frac{t^{-1 / 2}}{\left(t+4 m^{2}\right)^{(d-1) / 2}}+S\left(d ; p_{0}^{2}\right)
\end{aligned}
$$

This is a dispersion relation for the sunrise!

Given an initial condition this equation can be integrated easily!

- Note that

$$
S\left(d ; p^{2} \rightarrow 0\right) \rightarrow-\left(\frac{d-2}{2 m^{2}}\right) T\left(d, m^{2}\right)
$$

- And the quadrature formula becomes:

$$
\begin{aligned}
S\left(d ; p^{2}\right) & =-(d-2) T\left(d ; m^{2}\right) \sqrt{\frac{\left(p^{2}+4 m^{2}\right)^{d-3}}{p^{2}}} \\
& \times \int_{0}^{p^{2}} d t \frac{t^{-1 / 2}}{\left(t+4 m^{2}\right)^{(d-1) / 2}}+S(d ; 0)
\end{aligned}
$$

- And rescaling of $4 \mathrm{~m}^{2}$

$$
\int_{0}^{p^{2}} d t \frac{t^{-1 / 2}}{\left(t+4 m^{2}\right)^{(d-1) / 2}}=\left(4 m^{2}\right)^{(2-d) / 2} \int_{0}^{p^{2} / 4 m^{2}} x^{-1 / 2}(x+1)^{(1-d) / 2} d x
$$

Two points still have to be discussed:

1. How did I get the boundary condition?
2. What Happens if we expand in $d \rightarrow 4$?
\rightarrow for point 2. see Exercises...

- The Boundary condition is given by the value of the integral in a specific kinematical point.
- This is in general easier to compute than the orginal integral:

$$
\begin{aligned}
S\left(d ; p^{2}\right) & =\int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}\right)\left((p-k)^{2}+m^{2}\right)} \\
& =\int_{0}^{1} d x \int \frac{\mathfrak{D}^{d} k}{\left[\left(k^{2}+m^{2}\right)(1-x)+\left((p-k)^{2}+m^{2}\right) x\right]^{2}} \\
& \text { with the usual algebra } \\
& =\int_{0}^{1} d x \int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}+p^{2} x(1-x)\right)^{2}}
\end{aligned}
$$

Now it is trivial to take the limit $p^{2} \rightarrow 0$

$$
S\left(d ; p^{2} \rightarrow 0\right)=\int_{0}^{1} d x \int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}\right)^{2}}=\mathcal{I}(2,0)
$$

which can be reduced to MIs giving:

$$
=-\frac{(d-2)}{2 m^{2}} T\left(d ; m^{2}\right)
$$

In this case integration in ' $d x$ ' becomes completely trivial!

Very often direct computation of the boundary condition is not needed!

- Let us go back to differential equation:

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=\frac{1}{2}\left(\frac{(d-3)}{p^{2}+4 m^{2}}-\frac{1}{p^{2}}\right) S\left(d ; p^{2}\right)-\frac{(d-2)}{p^{2}\left(p^{2}+4 m^{2}\right)} T\left(d ; m^{2}\right)
$$

- There are two denominators: $1 / p^{2}$, and $1 /\left(p^{2}+4 m^{2}\right)$.
- $1 /\left(p^{2}+4 m^{2}\right)$ represents the threshold $p^{2} \rightarrow-4 m^{2}$ it is a real discontinuity of the function!
- $1 / p^{2}$ is instead a pseudo-threshold the sunrise must be regular in that point!!

We can use regularity in $p^{2} \rightarrow 0$ in order to infer boundary condition:

$$
\begin{aligned}
& \lim _{p^{2} \rightarrow 0}\left(p^{2} \frac{d}{d p^{2}} S\left(d ; p^{2}\right)\right) \rightarrow 0 \\
& 0=\lim _{p^{2} \rightarrow 0}\left[\frac{1}{2}\left(\frac{(d-3) p^{2}}{p^{2}+4 m^{2}}-1\right) S\left(d ; p^{2}\right)-\frac{(d-2)}{\left(p^{2}+4 m^{2}\right)} T\left(d ; m^{2}\right)\right] \\
& 0=-\frac{1}{2} S(d ; 0)-\frac{(d-2)}{4 m^{2}} T\left(d ; m^{2}\right) \quad \rightarrow \quad S(d ; 0)=-\frac{(d-2)}{2 m^{2}} T\left(d ; m^{2}\right) .
\end{aligned}
$$

This easy example shows already (almost) all main features of the differential equation method.

What changes in a general, multi-loop case?
Everything works in the exact same way except for one thing:
A general two-(multi-)loop Feynman graph can have more than 1 MI !

Quite in general, given some I-loop topology, i.e.

$$
\mathcal{I}\left(a_{1}, \ldots, a_{\sigma} ; b_{1}, \ldots, b_{t}\right)=\int \prod_{i=1}^{\prime} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}
$$

1. Identify the external invariants ' s_{j} ' the integrals depend on.
2. Use IBPs, LIs and SRs to reduce it to \mathbf{N} MIs $M_{i}\left(s_{j}\right), i=1, \ldots, N$.
3. Express derivatives $d / d s_{j}$ as combinations of $d / d p_{i}^{\mu}$
4. Applying $d / d s_{k}$ on the masters $M_{i}\left(s_{j}\right)$ we obtain again a combination of integrals of the form $\mathcal{I}\left(a_{1}, \ldots, a_{\sigma} ; b_{1}, \ldots, b_{t}\right)$
5. Reduce the r.h.s to MIs.

Since the sector contains N MIs we expect to find a linear system of N coupled first-order differential equations.

For every external invariant s_{k} we will have:

$$
\frac{\partial}{\partial s_{k}}\left(\begin{array}{c}
M_{1}\left(s_{j}\right) \\
\ldots \\
M_{N}\left(s_{j}\right)
\end{array}\right)=\left(\begin{array}{ccc}
C_{11}\left(d, s_{i}\right) & \ldots & C_{1 N}\left(d, s_{i}\right) \\
& \ldots & \\
C_{N 1}\left(d, s_{i}\right) & \ldots & C_{N N}\left(d, s_{i}\right)
\end{array}\right)\left(\begin{array}{c}
M_{1}\left(s_{j}\right) \\
\ldots \\
M_{N}\left(s_{j}\right)
\end{array}\right)
$$

+ Sub-topologies

Sub-topologies are assumed to be known \rightarrow bottom-up approach!

Euler scaling relation

- Feynman integrals are homogeneous functions of the external invariants

$$
\mathcal{I}\left(s_{1}, \ldots, s_{k}\right) \rightarrow \mathcal{I}\left(\lambda s_{1}, \ldots, \lambda s_{k}\right)=\lambda^{\alpha} \mathcal{I}\left(s_{1}, \ldots, s_{k}\right)
$$

- This means that they satisfy the Euler scaling relations:

$$
\left(s_{1} \frac{\partial}{\partial s_{1}}+\ldots+s_{k} \frac{\partial}{\partial s_{k}}\right) \mathcal{I}\left(s_{1}, \ldots, s_{k}\right)=\alpha \mathcal{I}\left(s_{1}, \ldots, s_{k}\right)
$$

so that one derivative is not independent from the others...

How do we solve a coupled linear system?
A coupled linear system of N equations is equivalent to a N -th order differential equation for one of the MIs.

This reflects the huge jump in complexity that there is going from 1 loop $\longrightarrow \mathbf{2}$ or more loops.

As long as there is $1 \mathrm{MI} \rightarrow$ linear first ord Diff. Eq.
\rightarrow can always be solved by quadrature!

$$
\begin{aligned}
& \frac{d}{d x} f(x)=H(x) f(x)+g(x) \\
& f(x)=F(x) \int_{x_{0}}^{x} d t \frac{g(t)}{F(t)}+f\left(x_{0}\right)
\end{aligned}
$$

where $F(x)$ solves the homogeneous equation:

$$
\frac{d}{d x} F(x)=H(x) F(x) \quad \rightarrow \quad F(x)=\exp \left(\int^{x} H(t) d t\right)
$$

- If we have a system, the only chance to obtain the same simplicity is to decouple (or at least triangularize) its matrix..
- Find a new basis of MIs, $m_{i}\left(s_{j}\right)$, such that

$$
\begin{aligned}
\frac{\partial}{\partial s_{k}}\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right) & =\left(\begin{array}{cccc}
c_{11}\left(d, s_{i}\right) & c_{12}\left(d, s_{i}\right) & \ldots & c_{1 N}\left(d, s_{i}\right) \\
0 & c_{22}\left(d, s_{i}\right) & \ldots & c_{2 N}\left(d, s_{i}\right) \\
\ldots & \ldots & \ldots & \\
0 & 0 & \ldots & c_{N N}\left(d, s_{i}\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right)+\text { Sub-topologies }
\end{aligned}
$$

- Unfortunately it is (almost) impossible to achieve this decoupling for generic values of the dimensions d.
- On the contrary experience shows that this can be much more easily done in the limit $d \rightarrow 4$ (or in general $d \rightarrow 2 n \ldots$)
- Taylor expanding the differential equations:

$$
\begin{aligned}
\frac{\partial}{\partial s_{k}}\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right)= & \left(\begin{array}{cccc}
c_{11}\left(4, s_{i}\right) & c_{12}\left(d, s_{i}\right) & \ldots & c_{1 N}\left(4, s_{i}\right) \\
0 & c_{22}\left(4, s_{i}\right) & \ldots & c_{2 N}\left(4, s_{i}\right) \\
\ldots & \ldots & \ldots & \\
0 & 0 & \ldots & c_{N N}\left(4, s_{i}\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right)+\mathcal{O}(d-4)
\end{aligned}
$$

- Choosing the right basis for which this happens is matter of luck and maybe some experience...
- If this happens, the equations can be integrated one after the other by quadrature.
- Given N initial conditions we can then obtain the results in closed form order by order in $(d-4)$.
$\rightarrow \rightarrow$ Expanding in $d \rightarrow 4$ is also necessary in order to recover the poly-logarithmic structure of the final result (if any...).

Let us go back to our easy 1-loop example (put $m=1$):

$$
\frac{d}{d p^{2}} S\left(d ; p^{2}\right)=\frac{1}{2}\left(\frac{(d-4)}{p^{2}+4}+\frac{1}{p^{2}+4}-\frac{1}{p^{2}}\right) S\left(d ; p^{2}\right)-\frac{(d-2)}{p^{2}\left(p^{2}+4\right)} T(d ; 1)
$$

Expand everything in $d \rightarrow 4$:

$$
\begin{aligned}
& (d-2) T(d ; 1)=\frac{1}{(d-4)} \\
& S\left(d ; p^{2}\right)=\frac{1}{d-4} S^{(-1)}\left(4 ; p^{2}\right)+S^{(0)}\left(4 ; p^{2}\right)+\mathcal{O}(d-4)
\end{aligned}
$$

Note that:

$$
T(d ; m)=\int \frac{\mathfrak{D}^{d} k}{k^{2}+m^{2}}=\frac{(4 \pi)^{(d-4) / 2}}{\Gamma\left(3-\frac{d}{2}\right)} \int \frac{d^{d} k}{(2 \pi)^{d-2}} \frac{1}{k^{2}+m^{2}}=\frac{m^{d-2}}{(d-2)(d-4)}
$$

Plugging all expansions in and collecting order by order in ($d-4$) we get a chained set of differential equations:

$$
\begin{aligned}
\frac{d}{d p^{2}} S^{(-1)}\left(4 ; p^{2}\right) & =\frac{1}{2}\left(\frac{1}{p^{2}+4}-\frac{1}{p^{2}}\right) S^{(-1)}\left(4 ; p^{2}\right) \\
& -\frac{1}{p^{2}\left(p^{2}+4\right)} \\
\frac{d}{d p^{2}} S^{(0)}\left(4 ; p^{2}\right) & =\frac{1}{2}\left(\frac{1}{p^{2}+4}-\frac{1}{p^{2}}\right) S^{(0)}\left(4 ; p^{2}\right) \\
& +\frac{1}{2} \frac{1}{p^{2}+4} S^{(-1)}\left(4 ; p^{2}\right)
\end{aligned}
$$

+ higher orders...

They need to be solved one after the order \rightarrow bottom-up

1. Homogeneous part is the same at every order

$$
\frac{d}{d p^{2}} f\left(p^{2}\right)=\frac{1}{2}\left(\frac{1}{p^{2}+4}-\frac{1}{p^{2}}\right) f\left(p^{2}\right)
$$

2. Solution of homogeneous equation gives the integration kernel! At order (-1):

$$
F\left(p^{2}\right)=F\left(p_{0}^{2}\right)-f\left(p^{2}\right) \int_{p_{0}^{2}}^{p^{2}} \frac{d t}{f(t)} \frac{1}{t(t+4)}
$$

3. Problem: solving it we get a square-root

$$
f\left(p^{2}\right)=\sqrt{\frac{p^{2}+4}{p^{2}}} \rightarrow \int_{p_{0}^{2}}^{p^{2}} d t \sqrt{\frac{t}{t+4}} \frac{1}{t(t+4)}
$$

This doesn't give trivially polylogs !

Change of variable to Landau variable

$$
t=\frac{(1-x)^{2}}{x} \quad \rightarrow \quad x=\frac{\sqrt{t+4}-\sqrt{t}}{\sqrt{t+4}+\sqrt{t}}, \quad \text { and } \quad d t=-\frac{\left(1-x^{2}\right)}{x^{2}} d x
$$

so that finally

$$
\int_{p_{0}^{2}}^{p^{2}} d t \sqrt{\frac{t}{t+4}} \frac{1}{t(t+4)} \rightarrow-\int_{x_{0}^{2}}^{x_{p}^{2}} \frac{d x}{(1+x)^{2}}=\left.\frac{1}{1+x}\right|_{x_{0}} ^{x_{p}}
$$

This suggests that from the beginning we derive differential equations in a new variable x such that

$$
p^{2}=\frac{(1-x)^{2}}{x} \quad \rightarrow \quad x=\frac{\sqrt{p^{2}+4}-\sqrt{p^{2}}}{\sqrt{p^{2}+4}+\sqrt{p^{2}}}, \quad \frac{d}{d x}=-\frac{\left(1-x^{2}\right)}{x^{2}} \frac{d}{d p^{2}}
$$

Differential equation becomes

$$
\begin{aligned}
\frac{d}{d x} S(d ; x) & =\left[\left(\frac{1}{1+x}+\frac{1}{1-x}\right)+(d-4)\left(\frac{1}{1+x}-\frac{1}{2 x}\right)\right] S(d ; x) \\
& +\frac{1}{2(d-4)}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)
\end{aligned}
$$

And expanded order by order in $(d-4)$

$$
\begin{aligned}
& \frac{d}{d x} S^{(-1)}(4 ; x)=\left(\frac{1}{1+x}+\frac{1}{1-x}\right) S^{(-1)}(4 ; x)+\frac{1}{2}\left(\frac{1}{1+x}+\frac{1}{1-x}\right) \\
& \frac{d}{d x} S^{(0)}(4 ; x)=\left(\frac{1}{1+x}+\frac{1}{1-x}\right) S^{(0)}(4 ; x)+\left(\frac{1}{1+x}-\frac{1}{2 x}\right) S^{(-1)}(4 ; x)
\end{aligned}
$$

+ higher orders...

$$
\frac{d}{d x} S^{(n)}(4 ; x)=\left(\frac{1}{1+x}+\frac{1}{1-x}\right) S^{(n)}(4 ; x)+\left(\frac{1}{1+x}-\frac{1}{2 x}\right) S^{(n-1)}(4 ; x)
$$

Now homogeneous equation doesn't have any more square-roots

$$
\frac{d}{d x} f(x)=\left(\frac{1}{1+x}+\frac{1}{1-x}\right) f(x) \quad \rightarrow \quad f(x)=\frac{1+x}{1-x}
$$

Define then $\forall n, \quad S^{(n)}(4 ; x)=f(x) M^{(n)}(x)$, new equations become

$$
\begin{aligned}
\frac{d}{d x} M^{(-1)}(x) & =\frac{1}{(1+x)^{2}} \\
\frac{d}{d x} M^{(n)}(x) & =\left(\frac{1}{1+x}-\frac{1}{2 x}\right) M^{(n-1)}(x)
\end{aligned}
$$

Looking closely it is already clear that these are HPLs with alphabet $\{0,-1\}$!

Integrating and imposing the boundary condition we get:

$$
\begin{aligned}
& S^{(-1)}(4 ; x)=-\frac{1}{2}, \quad S^{(0)}(4 ; x)=\frac{1}{2}-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1-x}\right) G(0, x) \\
& S^{(1)}(4 ; x)=-\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1-x}\right)\left(\frac{\zeta_{2}}{2}-G(0, x)-\frac{1}{2} G(0,0, x)+G(-1,0, x)\right)
\end{aligned}
$$

When do we get generalised poly-logarithms?

1. We need only linear rational factors in the equation
2. Solution of homogeneous equation is again only linear rational functions
3. $\rightarrow d \ln (x-a) \approx 1 /(x-a)$

Can we be more precise?

Canonical Form by J. Henn

Suppose we are able to find a basis of Master Intergrals such that the system of differential equations takes the following form:

$$
\frac{\partial}{\partial s_{k}}\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right)=(d-4)\left(\begin{array}{ccc}
c_{11}\left(s_{i}\right) & \ldots & c_{1 N}\left(s_{i}\right) \\
c_{21}\left(s_{i}\right) & \ldots & c_{2 N}\left(s_{i}\right) \\
\ldots & \ldots & \ldots \\
c_{N 1}\left(s_{i}\right) & \ldots & c_{N N}\left(s_{i}\right)
\end{array}\right)\left(\begin{array}{c}
m_{1}\left(s_{j}\right) \\
\ldots \\
m_{N}\left(s_{j}\right)
\end{array}\right)
$$

So that the dependence from the kinematics is factorised from d.
If now every function $c_{j k}\left(s_{i}\right)=d \log a \quad$ they all become obviously poly-logs!

Equation for sunrise is not in the right form:

$$
\begin{aligned}
\frac{d}{d x} S(d ; x) & =\left[\left(\frac{1}{1+x}+\frac{1}{1-x}\right)+(d-4)\left(\frac{1}{1+x}-\frac{1}{2 x}\right)\right] S(d ; x) \\
& +\frac{1}{2(d-4)}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)
\end{aligned}
$$

Write differential equation for new basis:

$$
\begin{aligned}
m_{1}(d ; x) & =\mathcal{I}(2,0)=\int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}\right)^{2}} \\
m_{2}(d ; x)=\frac{(1-x)(1+x)}{x} \mathcal{I}(2,1) & =\frac{(1-x)(1+x)}{x} \int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}\right)^{2}\left((k-p)^{2}+m^{2}\right)}
\end{aligned}
$$

It is trivial using the IBPs...

Differential equations for this basis become:

$$
\frac{d}{d x}\binom{m_{1}(d, x)}{m_{2}(d, x)}=(d-4)\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2 x} & \left(\frac{1}{1+x}-\frac{1}{2 x}\right)
\end{array}\right)\binom{m_{1}(d, x)}{m_{2}(d, x)}
$$

The second master represents the sunrise, its equation is

$$
\frac{d m_{2}(d, x)}{d x}=(d-4)\left[\frac{m_{1}(d, x)}{2 x}+\left(\frac{1}{1+x}-\frac{1}{2 x}\right) m_{2}(d, x)\right]
$$

Whose integration is now completely elementary, once expanded in $d-4$!

Decoupling in $d \rightarrow n$ and direct integration in poly-logarithms
What when they really don't decouple, not even in $d=4$?

Then we are in trouble!

First case when this happens is the massive two-loop sunrise, (see Lecture 2).

Two-loop sunrise with equal masses

- It has two MIs

$$
S_{1}\left(d ; p^{2}\right)=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2} D_{3}}, \quad S_{2}\left(d ; p^{2}\right)=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{2} D_{2} D_{3}}
$$

- They respect two coupled differential equations ($m=1, p^{2}=z$)

$$
\begin{aligned}
z \frac{d}{d z} S_{1}(d ; z) & =(d-3) S_{1}(d ; z)+3 S_{2}(d ; z) \\
z(z+1)(z+9) \frac{d}{d z} S_{2}(d ; z) & =\frac{1}{2}(d-3)(8-3 d)(z+3) S_{1}(d ; z) \\
& +\frac{1}{2}\left[(d-4) z^{2}+10(2-d) z+9(8-3 d)\right] S_{2}(d ; z) \\
& +\frac{1}{2}(d-2)^{2} z T(d)
\end{aligned}
$$

- There exists no general algorithm to solve a coupled system.
- Best thing is usually rewrite it as second order differential equation for one of the two MIs, and try to solve that one.
- The second order differential equation can be solved only in terms of Elliptic functions... \rightarrow ?
- Here still more questions than answers...

Something to read...:

- Differential Equations for Feynman Graph Amplitudes, E. Remiddi, [hep-th/9711188]
- Differential Equations for Two-Loop Four-Point Functions, T. Gehrmann, E. Remiddi, [hep-ph/9912329]
- Feynman Diagrams and Differential Equations, M. Argeri, P. Mastrolia, [arXiv:0707.4037]
- Harmonic Polylogarithms, E. Remiddi, J. Vermaseren, [hep-ph/9905237]
- From polygons to symbols to polylogarithmic functions, C. Duhr, H. Gangl, J. Rhodes, [arXiv:1110.0458]

Thanks !!

