
Methods for multi-loop computations

Methods for multi-loop computations

Lorenzo Tancredi

Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

1 / 47

Methods for multi-loop computations

Lecture 3

Differential Equations for MIs

2 / 47

Methods for multi-loop computations

I Introduction:

1. Back to the MIs
2. Choice of basis → physical cuts

I Differential Equations method (DE):

1. Derive the equations
2. Decoupling
3. Choice of variables

I Canonical (Henn-like) differential equations

3 / 47

Methods for multi-loop computations

Introduction

4 / 47

Methods for multi-loop computations

I We have seen how a physical amplitude can be reduced to MIs

I Two-loop 4-point functions: from ≈ 1000 Ints → ≈ 10 MIs

Problems remain:

1. How do we compute them?

2. MIs form a basis, choice is not unique !

3. → How to choose them?

4. Are there basis choices that are better than others?

5 / 47

Methods for multi-loop computations

Different methods have been developed for computing Feynman Integrals:

1. Feynman Parameters

2. Mellin Barnes representations

3. Dispersion relations see g-2 of electron at 3 loops !

4. Differential Equations (DE).

We will focus our attention on Differential Equations!

6 / 47

Methods for multi-loop computations

Differential Equations (for Feynman integrals!)

7 / 47

Methods for multi-loop computations

Example:

Let us consider the case of the 1-loop massive Sunrise

S(d ; p2,m2) = -

&%
'$

p2

=

∫
Ddk

1

(k2 + m2) ((k − p)2 + m2)

It must be a scalar function only of the ratio p2/m2

we could put for simplicity: m2 = 1 , p2 = z , but it is clearer to keep all
variables for the moment

8 / 47

Methods for multi-loop computations

Idea:

I Since I know the integral must depend only on p2, can I “by-pass”
the direct loop-integration?

I In other words, can I write a dispersion relation for S(d ; p2) in p2?
(sort of...)

If I had:

d

d p2
S(d ; p2) = f (p2) plus S(d ; p2

0) = Nd ,

then I could write

S(d ; p2) = Nd +

∫ p2

p2
0

dt f (t) → Bingo!!

9 / 47

Methods for multi-loop computations

Differentiating respect to p2 amounts to differentiating respect to pµ !

p2 = pµ pµ −→
∂ p2

∂ pµ
= 2 pµ ,

pµ
∂

∂ pµ
= pµ

∂ p2

∂ pµ

∂

∂ p2
−→ ∂

∂ p2
=

1

2 p2

(
pµ

∂

∂ pµ

)

This differential operator contains only the external momentum!
I can apply it directly on the integral representation of the sunrise !!

d

d p2
S(d ; p2) =

1

2 p2

(
pµ

∂

∂ pµ

)∫
Ddk

1

(k2 + m2) ((k − p)2 + m2)

10 / 47

Methods for multi-loop computations

Using the fact that in dimensional regularisation integrals are always
convergent I can act with the operator directly on the integrand!

d

d p2
S(d ; p2) =

1

2 p2

∫
Ddk

(
pµ

∂

∂ pµ

)
1

(k2 + m2) ((k − p)2 + m2)

This is very similar to an IBP !

1. Acts in the same way as IBPs → doesn’t change the topology!

2. The result can be reduced to MIs again !!

11 / 47

Methods for multi-loop computations

Performing the derivatives we find

∂

∂pµ

1

((k − p)2 + m2)
= − 1

((k − p)2 + m2)2
[2(pµ − kµ)]

so that (
pµ

∂

∂pµ

)
1

((k − p)2 + m2)
=

2 k · p − 2p2

((k − p)2 + m2)2

and using
2 k · p = (k2 + m2)− ((k − p)2 + m2) + p2

we finally find

d

d p2

1

((k − p)2 + m2)
=

(k2 + m2)

((k − p)2 + m2)2
− 1

((k − p)2 + m2)
− p2

((k − p)2 + m2)2

12 / 47

Methods for multi-loop computations

Let us introduce this notation:

I(n1, n2) =

∫
Ddk

1

(k2 + m2)n1 ((k − p)2 + m2)n2
, S(d ; p2) = I(1, 1) .

Then the derivative reads

d

d p2
I(1, 1) =

1

2p2
(I(0, 2)− I(1, 1))− 1

2
I(1, 2) .

But now these integrals can be reduced to the two MIs!! (see Lecture 1)

I(1, 0) = T (d ;m) , I(1, 1) = S(d ; p2)

13 / 47

Methods for multi-loop computations

The reduction identities read:

I(0, 2) = I(2, 0) = − (d − 2)

2m2
T (d ;m)

I(1, 2) = − (d − 2)

2m2(p2 + 4m2)
T (d ;m)− (d − 3)

p2 + 4m2
S(d ; p2)

with which the differential equation becomes:

d

d p2
S(d ; p2) =

1

2

(
(d − 3)

p2 + 4m2
− 1

p2

)
S(d ; p2)− (d − 2)

p2(p2 + 4m2)
T (d ;m)

Linear First Order differential equation for S(d , p2) !

14 / 47

Methods for multi-loop computations

The homogeneous equation reads

d

d p2
SH(d ; p2) =

1

2

(
(d − 3)

p2 + 4m2
− 1

p2

)
SH(d ; p2)

which has solution

SH(d ; p2) =

√
(p2 + 4m2)d−3

p2

which finally gives for the solution by quadrature

S(d ; p2) = −(d − 2)T (d ;m2)

√
(p2 + 4m2)d−3

p2

×
∫ p2

p2
0

d t
t−1/2

(t + 4m2)(d−1)/2
+ S(d ; p2

0)

This is a dispersion relation for the sunrise !

15 / 47

Methods for multi-loop computations

Given an initial condition this equation can be integrated easily!

I Note that

S(d ; p2 → 0)→ −
(
d − 2

2m2

)
T (d ,m2)

I And the quadrature formula becomes:

S(d ; p2) = −(d − 2)T (d ;m2)

√
(p2 + 4m2)d−3

p2

×
∫ p2

0

d t
t−1/2

(t + 4m2)(d−1)/2
+ S(d ; 0)

I And rescaling of 4m2

∫ p2

0

d t
t−1/2

(t + 4m2)(d−1)/2
= (4m2)(2−d)/2

∫ p2/4m2

0

x−1/2 (x + 1)(1−d)/2 dx

16 / 47

Methods for multi-loop computations

Two points still have to be discussed:

1. How did I get the boundary condition?

2. What Happens if we expand in d → 4 ?

→ for point 2. see Exercises...

17 / 47

Methods for multi-loop computations

I The Boundary condition is given by the value of the integral in a
specific kinematical point.

I This is in general easier to compute than the orginal integral:

S(d ; p2) =

∫
Ddk

(k2 + m2)((p − k)2 + m2)

=

∫ 1

0

dx

∫
Ddk

[(k2 + m2)(1− x) + ((p − k)2 + m2)x]2

with the usual algebra

=

∫ 1

0

dx

∫
Ddk

(k2 + m2 + p2x(1− x))2

18 / 47

Methods for multi-loop computations

Now it is trivial to take the limit p2 → 0

S(d ; p2 → 0) =

∫ 1

0

dx

∫
Ddk

(k2 + m2)2 = I(2, 0)

which can be reduced to MIs giving:

= − (d − 2)

2m2
T (d ;m2)

In this case integration in ‘dx ’ becomes completely trivial!

19 / 47

Methods for multi-loop computations

Very often direct computation of the boundary condition is not needed!

I Let us go back to differential equation:

d

d p2
S(d ; p2) =

1

2

(
(d − 3)

p2 + 4m2
− 1

p2

)
S(d ; p2)− (d − 2)

p2(p2 + 4m2)
T (d ;m2)

I There are two denominators: 1/p2 , and 1/(p2 + 4m2) .

I 1/(p2 + 4m2) represents the threshold p2 → −4m2

it is a real discontinuity of the function!

I 1/p2 is instead a pseudo-threshold
the sunrise must be regular in that point!!

20 / 47

Methods for multi-loop computations

We can use regularity in p2 → 0 in order to infer boundary condition:

lim
p2→0

(
p2 d

d p2
S(d ; p2)

)
→ 0

0 = lim
p2→0

[
1

2

(
(d − 3)p2

p2 + 4m2
− 1

)
S(d ; p2)− (d − 2)

(p2 + 4m2)
T (d ;m2)

]

0 = −1

2
S(d ; 0)− (d − 2)

4m2
T (d ;m2) → S(d ; 0) = − (d − 2)

2m2
T (d ;m2) .

21 / 47

Methods for multi-loop computations

This easy example shows already (almost) all main features of the
differential equation method.

What changes in a general, multi-loop case?

Everything works in the exact same way except for one thing:

A general two-(multi-)loop Feynman graph can have more than 1 MI!

22 / 47

Methods for multi-loop computations

Quite in general, given some l-loop topology, i.e.

I(a1, ..., aσ; b1, ..., bt) =

∫ l∏
i=1

Ddki
Sa1

1 ...Saσ
σ

Db1
1 ...Dbt

t

1. Identify the external invariants ‘sj ’ the integrals depend on .

2. Use IBPs, LIs and SRs to reduce it to N MIs Mi (sj), i = 1, ...,N .

3. Express derivatives d/dsj as combinations of d/dpµi

4. Applying d/dsk on the masters Mi (sj) we obtain again a combination of
integrals of the form I(a1, ..., aσ; b1, ..., bt)

5. Reduce the r.h.s to MIs.

23 / 47

Methods for multi-loop computations

Since the sector contains N MIs we expect to find a linear system of
N coupled first-order differential equations.

For every external invariant sk we will have:

∂

∂sk

 M1(sj)
...

MN(sj)

 =

 C11(d , si) ... C1N(d , si)
...

CN1(d , si) ... CNN(d , si)

  M1(sj)
...

MN(sj)



+ Sub-topologies

Sub-topologies are assumed to be known → bottom-up approach!

24 / 47

Methods for multi-loop computations

Euler scaling relation

I Feynman integrals are homogeneous functions of the external invariants

I(s1, ..., sk)→ I(λ s1, ..., λ sk) = λαI(s1, ..., sk) .

I This means that they satisfy the Euler scaling relations:(
s1
∂

∂s1
+ ...+ sk

∂

∂sk

)
I(s1, ..., sk) = α I(s1, ..., sk) ,

so that one derivative is not independent from the others...

25 / 47

Methods for multi-loop computations

How do we solve a coupled linear system?

A coupled linear system of N equations is equivalent to a
N-th order differential equation for one of the MIs.

This reflects the huge jump in complexity that there is going from
1 loop −→ 2 or more loops.

26 / 47

Methods for multi-loop computations

As long as there is 1 MI → linear first ord Diff. Eq.
→ can always be solved by quadrature!

d

dx
f (x) = H(x) f (x) + g(x)

f (x) = F (x)

∫ x

x0

dt
g(t)

F (t)
+ f (x0)

where F (x) solves the homogeneous equation:

d

dx
F (x) = H(x)F (x) → F (x) = exp

(∫ x

H(t) dt

)

27 / 47

Methods for multi-loop computations

I If we have a system, the only chance to obtain the same simplicity
is to decouple (or at least triangularize) its matrix..

I Find a new basis of MIs, mi (sj), such that

∂

∂sk

 m1(sj)
...

mN(sj)

 =


c11(d , si) c12(d , si) ... c1N(d , si)

0 c22(d , si) ... c2N(d , si)
...
0 0 ... cNN(d , si)



×

 m1(sj)
...

mN(sj)

 + Sub-topologies

28 / 47

Methods for multi-loop computations

I Unfortunately it is (almost) impossible to achieve this decoupling for
generic values of the dimensions d .

I On the contrary experience shows that this can be much more easily done
in the limit d → 4 (or in general d → 2n ...)

I Taylor expanding the differential equations:

∂

∂sk

 m1(sj)
...

mN(sj)

 =


c11(4, si) c12(d , si) ... c1N(4, si)

0 c22(4, si) ... c2N(4, si)
...
0 0 ... cNN(4, si)



×

 m1(sj)
...

mN(sj)

 + O(d − 4)

29 / 47

Methods for multi-loop computations

I Choosing the right basis for which this happens is matter of luck and
maybe some experience...

I If this happens, the equations can be integrated one after the other by
quadrature.

I Given N initial conditions we can then obtain the results in closed form
order by order in (d − 4).

I → Expanding in d → 4 is also necessary in order to recover the
poly-logarithmic structure of the final result (if any...).

30 / 47

Methods for multi-loop computations

Let us go back to our easy 1-loop example (put m = 1):

d

d p2
S(d ; p2) =

1

2

(
(d − 4)

p2 + 4
+

1

p2 + 4
− 1

p2

)
S(d ; p2)− (d − 2)

p2(p2 + 4)
T (d ; 1)

Expand everything in d → 4:

(d − 2)T (d ; 1) =
1

(d − 4)

S(d ; p2) =
1

d − 4
S (−1)(4; p2) + S (0)(4; p2) +O(d − 4)

Note that:

T (d ;m) =

∫
Ddk

k2 + m2
=

(4π)(d−4)/2

Γ
(
3− d

2

) ∫ ddk

(2π)d−2

1

k2 + m2
=

md−2

(d − 2)(d − 4)
.

31 / 47

Methods for multi-loop computations

Plugging all expansions in and collecting order by order in (d − 4) we get a
chained set of differential equations:

d

d p2
S (−1)(4; p2) =

1

2

(
1

p2 + 4
− 1

p2

)
S (−1)(4; p2)

− 1

p2(p2 + 4)

d

d p2
S (0)(4; p2) =

1

2

(
1

p2 + 4
− 1

p2

)
S (0)(4; p2)

+
1

2

1

p2 + 4
S (−1)(4; p2)

+ higher orders...

32 / 47

Methods for multi-loop computations

They need to be solved one after the order → bottom-up

1. Homogeneous part is the same at every order

d

d p2
f (p2) =

1

2

(
1

p2 + 4
− 1

p2

)
f (p2)

2. Solution of homogeneous equation gives the integration kernel!
At order (−1):

F (p2) = F (p2
0)− f (p2)

∫ p2

p2
0

dt

f (t)

1

t(t + 4)

3. Problem: solving it we get a square-root

f (p2) =

√
p2 + 4

p2
→

∫ p2

p2
0

dt

√
t

t + 4

1

t(t + 4)

This doesn’t give trivially polylogs !

33 / 47

Methods for multi-loop computations

Change of variable to Landau variable

t =
(1− x)2

x
→ x =

√
t + 4−

√
t√

t + 4 +
√
t
, and dt = − (1− x2)

x2
dx

so that finally∫ p2

p2
0

dt

√
t

t + 4

1

t(t + 4)
→ −

∫ x2
p

x2
0

dx

(1 + x)2
=

1

1 + x

∣∣∣xp
x0

This suggests that from the beginning we derive differential equations in a new
variable x such that

p2 =
(1− x)2

x
→ x =

√
p2 + 4−

√
p2√

p2 + 4 +
√

p2
,

d

dx
= − (1− x2)

x2

d

dp2

34 / 47

Methods for multi-loop computations

Differential equation becomes

d

d x
S(d ; x) =

[(
1

1 + x
+

1

1− x

)
+ (d − 4)

(
1

1 + x
− 1

2 x

)]
S(d ; x)

+
1

2 (d − 4)

(
1

1 + x
+

1

1− x

)

35 / 47

Methods for multi-loop computations

And expanded order by order in (d − 4)

d

d x
S (−1)(4; x) =

(
1

1 + x
+

1

1− x

)
S (−1)(4; x) +

1

2

(
1

1 + x
+

1

1− x

)

d

d x
S (0)(4; x) =

(
1

1 + x
+

1

1− x

)
S (0)(4; x) +

(
1

1 + x
− 1

2 x

)
S (−1)(4; x)

+ higher orders...

d

d x
S (n)(4; x) =

(
1

1 + x
+

1

1− x

)
S (n)(4; x) +

(
1

1 + x
− 1

2 x

)
S (n−1)(4; x)

36 / 47

Methods for multi-loop computations

Now homogeneous equation doesn’t have any more square-roots

d

d x
f (x) =

(
1

1 + x
+

1

1− x

)
f (x) → f (x) =

1 + x

1− x

Define then ∀n , S (n)(4; x) = f (x)M(n)(x) , new equations become

d

d x
M(−1)(x) =

1

(1 + x)2

d

d x
M(n)(x) =

(
1

1 + x
− 1

2 x

)
M(n−1)(x) ,

Looking closely it is already clear that these are HPLs with alphabet {0,−1} !

37 / 47

Methods for multi-loop computations

Integrating and imposing the boundary condition we get:

S(−1)(4; x) =−
1

2
, S(0)(4; x) =

1

2
−

1

2

(
1

2
−

1

1− x

)
G(0, x)

S(1)(4; x) =−
1

2
+

1

2

(
1

2
−

1

1− x

)(
ζ2

2
− G(0, x)−

1

2
G(0, 0, x) + G(−1, 0, x)

)

38 / 47

Methods for multi-loop computations

When do we get generalised poly-logarithms?

1. We need only linear rational factors in the equation

2. Solution of homogeneous equation is again only linear rational functions

3. → d ln (x − a) ≈ 1/(x − a)

Can we be more precise?

39 / 47

Methods for multi-loop computations

Canonical Form by J. Henn

Suppose we are able to find a basis of Master Intergrals such that the system
of differential equations takes the following form:

∂

∂sk

 m1(sj)
...

mN(sj)

 = (d − 4)


c11(si) ... c1N(si)
c21(si) ... c2N(si)
...

cN1(si) ... cNN(si)


 m1(sj)

...
mN(sj)



So that the dependence from the kinematics is factorised from d .

If now every function cjk(si) = d log a they all become obviously poly-logs!

40 / 47

Methods for multi-loop computations

Equation for sunrise is not in the right form:

d

d x
S(d ; x) =

[(
1

1 + x
+

1

1− x

)
+ (d − 4)

(
1

1 + x
−

1

2 x

)]
S(d ; x)

+
1

2 (d − 4)

(
1

1 + x
+

1

1− x

)

Write differential equation for new basis:

m1(d ; x) = I(2, 0) =

∫
Ddk

(k2 + m2)2

m2(d ; x) =
(1− x)(1 + x)

x
I(2, 1) =

(1− x)(1 + x)

x

∫
Ddk

(k2 + m2)2 ((k − p)2 + m2)

It is trivial using the IBPs...

41 / 47

Methods for multi-loop computations

Differential equations for this basis become:

d

dx

(
m1(d , x)
m2(d , x)

)
= (d − 4)

(
0 0
1

2x

(
1

1+x
− 1

2x

)) (m1(d , x)
m2(d , x)

)

The second master represents the sunrise, its equation is

d m2(d , x)

dx
= (d − 4)

[
m1(d , x)

2x
+

(
1

1 + x
− 1

2x

)
m2(d , x)

]

Whose integration is now completely elementary, once expanded in d − 4 !

42 / 47

Methods for multi-loop computations

Decoupling in d → n and direct integration in poly-logarithms

What when they really don’t decouple, not even in d = 4?

Then we are in trouble!

First case when this happens is the massive two-loop sunrise, (see Lecture 2).

43 / 47

Methods for multi-loop computations

Two-loop sunrise with equal masses -

&%
'$m

m

m

p2

I It has two MIs

S1(d ; p2) =

∫
DdkDd l

D1 D2 D3
, S2(d ; p2) =

∫
DdkDd l

D2
1 D2 D3

.

I They respect two coupled differential equations (m = 1 , p2 = z)

z
d

dz
S1(d ; z) = (d − 3)S1(d ; z) + 3S2(d ; z)

z(z + 1)(z + 9)
d

dz
S2(d ; z) =

1

2
(d − 3)(8− 3d)(z + 3)S1(d ; z)

+
1

2

[
(d − 4)z2 + 10(2− d)z + 9(8− 3d)

]
S2(d ; z)

+
1

2
(d − 2)2 z T (d) .

44 / 47

Methods for multi-loop computations

I There exists no general algorithm to solve a coupled system.

I Best thing is usually rewrite it as second order differential equation for
one of the two MIs, and try to solve that one.

I The second order differential equation can be solved only in terms of
Elliptic functions... → ?

I Here still more questions than answers...

45 / 47

Methods for multi-loop computations

Something to read...:

I Differential Equations for Feynman Graph Amplitudes, E. Remiddi,
[hep-th/9711188]

I Differential Equations for Two-Loop Four-Point Functions, T. Gehrmann, E.
Remiddi, [hep-ph/9912329]

I Feynman Diagrams and Differential Equations, M. Argeri, P. Mastrolia,
[arXiv:0707.4037]

I Harmonic Polylogarithms, E. Remiddi, J. Vermaseren, [hep-ph/9905237]

I From polygons to symbols to polylogarithmic functions, C. Duhr, H. Gangl, J.
Rhodes, [arXiv:1110.0458]

46 / 47

Methods for multi-loop computations

Thanks !!

47 / 47

