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» Introduction:

1. Back to the Mls
2. Choice of basis — physical cuts

» Differential Equations method (DE):

1. Derive the equations
2. Decoupling
3. Choice of variables

» Canonical (Henn-like) differential equations
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Introduction
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» We have seen how a physical amplitude can be reduced to Mls

» Two-loop 4-point functions: from ~ 1000 Ints — ~ 10 Mls
Problems remain:

1. How do we compute them?

N

. Mls form a basis, choice is not unique !

— How to choose them?

w

4. Are there basis choices that are better than others?
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Different methods have been developed for computing Feynman Integrals:

1. Feynman Parameters
2. Mellin Barnes representations

3. Dispersion relations see g-2 of electron at 3 loops !

4. Differential Equations (DE).

We will focus our attention on Differential Equations!
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Differential Equations (for Feynman integrals!)
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Example:

Let us consider the case of the 1-loop massive Sunrise

p? 1
S(d: p*,m*) = ‘Qi _/Qdk(k2+m2)((k—p)2+m2)

It must be a scalar function only of the ratio p?/m?

we could put for simplicity: m®> =1, p? = z, but it is clearer to keep all
variables for the moment
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Idea:

» Since | know the integral must depend only on p?, can | “by-pass”
the direct loop-integration?

» In other words, can | write a dispersion relation for S(d; p?) in p??

(sort of..)
If 1 had:

d
TPQS(d:pZ):f(/f) plus  S(d;pg) = Ny,

then | could write

P
S(d;pz):Nd—i—/ dtf(t) — Bingol!
P,

2
0
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Differentiating respect to p?> amounts to differentiating respect to p* |

0 p?

p2:p“pu—>75p =2p,
i

o _, o0 0 1 9
P o, ~ P ap, op2 ap2 ~ 2p2 \P"ap,

This differential operator contains only the external momentum!
| can apply it directly on the integral representation of the sunrise !!

d Coy 1 ) J 1
ap P =5 (”“apu)/@ T ) (k= pRt )
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Using the fact that in dimensional regularisation integrals are always
convergent | can act with the operator directly on the integrand!

1

dcgr— L (oo (s O
TSP = 5 [ ("“ap) K2+ m2) (k= p)? + )

This is very similar to an IBP !

1. Acts in the same way as IBPs — doesn’t change the topology!

2. The result can be reduced to Mls again !!
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Performing the derivatives we find

0 : = - L W gn
aipu ((k—p)2+m2) — ((k— p)?+ m?)? [2(p k"]
so that
(P i) L _ _2k-p-2p
*“op.) ((k—p)2+m?2)  ((k—p)?+ m?)?
and using

2k-p= (K +m?) = ((k—p)*+m*) + p*
we finally find

d 1 (k* + m?) 1

p

2

dp ((k=pr+m) ~ (k=pP+m)  (k=pP+m)  ((k=pp+m)’
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Let us introduce this notation:

J 1
Z(n, o) = /33 k (k2 + m2)m ((k — p)> + m?)m2’

Then the derivative reads

d 1 1
Tp21(1’1) =37 (2(0,2) = Z(1,1)) - 5 Z(1,2).

But now these integrals can be reduced to the two MIs!! (see Lecture 1)

7(1,0) = T(d;m),  ZI(1,1) = S(d; p°)

S(d; p?) = Z(1,1).
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The reduction identities read:

7(0,2) = Z(2,0) = —(0’2;22) T(d; m)
(1,2) = *% T(d; m) — % S(d; p*)

with which the differential equation becomes:
d 2 1/ (d-3) 1 2 (d—-12)
g . _(\d9=35 - . __\la—24) )
dp25(d,p ) ( = S(d; p°) 2 T(d; m)

2\ p2+4m? p? 4+ 4m?)

Linear First Order differential equation for S(d, p®) !
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The homogeneous equation reads

d N (d—3) 1
dpst(d,P)* 2 <p2+4m2 p2

) Su(d; p°)

which has solution
p2 + 4m?)d-3
Sn(d,; Pz) = %
which finally gives for the solution by quadrature

(p2 + 4m?)d—3

S(di ") = ~(d =) T(d; ') [ L3

=172
L2
/ dt(t—|—4 DICETE + S(d; p3)
Po

This is a dispersion relation for the sunrise !
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Given an initial condition this equation can be integrated easily!

» Note that g0
L2 _(d- 2
S(d; p"—0) — ( o2 ) T(d, m)

» And the quadrature formula becomes:

(p? + 4m?)d-3
P2

p? 12
X/O dt gy + S 0)

S(d; p) = —(d — 2)T(d; )

» And rescaling of 4 m?

2

2 —1/2 2 /am
/,, dt a7 £ = (4m?)@=9/2 /,,/ x 7 (x+ 1) gx
0 0

t+ 4m?2)@-1)/2

16
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Two points still have to be discussed:

1. How did | get the boundary condition?

2. What Happens if we expand in d — 47

— for point 2. see Exercises...
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» The Boundary condition is given by the value of the integral in a
specific kinematical point.

» This is in general easier to compute than the orginal integral:

2y _ :de
S(di p7) = / (k2 +m2)((p — k)* + m?)

_ /1 e / @dk i
0 [(k2 + m?)(1 = x) + ((p — k)? + m?)x]

with the usual algebra

1 D9k
e z
0 (k2 + m? + px(1 — x))
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Now it is trivial to take the limit p> — 0

d
S(d; p*> — 0) / dx/ k2© k 5 = 1(2,0)

+m?)?

which can be reduced to Mls giving:

(d-2)

2 m2

T(d; m?)

In this case integration in ‘dx’ becomes completely trivial!
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Very often direct computation of the boundary condition is not needed!

> Let us go back to differential equation:

d 2y 1/ (d=-3) 1 Ay (d=2) o
dpQS(d'p)_z(p2+4m2 pz) 5(d; p%) p2(p? + 4m?) T(d;m")

» There are two denominators: 1/p?, and 1/(p* + 4m?).

» 1/(p® + 4m®) represents the threshold p?> — —4m?
it is a real discontinuity of the function!

» 1/p? is instead a pseudo-threshold
the sunrise must be regular in that point!!
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We can use regularity in p?> — 0 in order to infer boundary condition:

lim (p2 dip25(d; pz)) —0

p2—0

L 1/ (d—-3)p? 5 (d —2) o,
n'ﬂ%{a(m—l) SUP) = o amy T(Em)

_ 1o (d-2) (d—2)
0= —25(d:0) —

T(d;m’) — 5(d;0)=— o2

T(d; m%).
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This easy example shows already (almost) all main features of the
differential equation method.

What changes in a general, multi-loop case?
Everything works in the exact same way except for one thing:

A general two-(multi-)loop Feynman graph can have more than 1 MI!
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Quite in general, given some l-loop topology, i.e.
.52
(a1, ..y 35; b1, ...y by) = /H@d Dbl Db'
1. Identify the external invariants 's;" the integrals depend on.
2. Use IBPs, Lls and SRs to reduce it to N Mls M;(s;), i=1,...,N.
3. Express derivatives d/ds; as combinations of d/dp!

4. Applying d/ds, on the masters M;(s;) we obtain again a combination of
integrals of the form Z(ax, ..., as; b, ..., bt)

5. Reduce the r.h.s to Mls.
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Since the sector contains N Mls we expect to find a linear system of
N coupled first-order differential equations.

For every external invariant s, we will have:

0

M(s;) Cu(d,si) ... Gwl(d,si) M (s;)
875,( e

M/\/(Sj) CNl(d,S,') CNN(d,S,') MN(SJ)

+ Sub-topologies

Sub-topologies are assumed to be known — bottom-up approach!
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Euler scaling relation

» Feynman integrals are homogeneous functions of the external invariants

Z(sty oy Sk) = Z(A Sty ey ASk) = AYZ(S1, .ony Sk) -

» This means that they satisfy the Euler scaling relations:

0 0
(516751 + ...+ 5k87$k> _'Z(S17 ...75;() = aI(s1, ...,Sk)7

so that one derivative is not independent from the others...
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How do we solve a coupled linear system?

A coupled linear system of N equations is equivalent to a
N-th order differential equation for one of the Mls.

This reflects the huge jump in complexity that there is going from
1 loop — 2 or more loops.

26
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As long as there is 1 MI — linear first ord Diff. Eq.
— can always be solved by quadrature!

d

2 [0 = HO) £(x) + g(x)

x)/ dtg()+f(x)

where F(x) solves the homogeneous equation:

% F(x) = H(x) F(x) — F(x) = exp ( / " H(E) dt)
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> If we have a system, the only chance to obtain the same simplicity
is to decouple (or at least triangularize) its matrix..

» Find a new basis of Mls, mj(s;), such that

) ci(d,s;) cp(d,s) ... an(d,s)
i ml(sj) . 0 C22(d, S,') CQN(d7 S,')
9 -
% mN(sJ) 0 0 C[\”\/(d7 S,')
ml(sj)

+ Sub-topologies
my(sj)
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» Unfortunately it is (almost) impossible to achieve this decoupling for
generic values of the dimensions d.

> On the contrary experience shows that this can be much more easily done
in the limit d — 4 (or in general d — 2n ...)

» Taylor expanding the differential equations:

. C11(47 5,‘) Cu(d7 5,‘) C;U\/(47 S,')
i ml(sj) o 0 C22(4, S,') CQN(4, S,')
ask > . - e
mN(Sj) 0 0 C/\//\/(47 S,')
my(sj)
X + O(d—4)

mn(s;)
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» Choosing the right basis for which this happens is matter of luck and
maybe some experience...

» If this happens, the equations can be integrated one after the other by
quadrature.

» Given N initial conditions we can then obtain the results in closed form
order by order in (d — 4).

» — Expanding in d — 4 is also necessary in order to recover the
poly-logarithmic structure of the final result (if any...).
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Let us go back to our easy 1-loop example (put m = 1):

d 2y _1((d-4) 1 1 C2y . (d=2) .
dPQS(d'p)_2(p2+4+p2+4 p2)5(d'p) P+ ) @

Expand everything in d — 4:

(d—2) T(d;1) = ﬁ

S(dip?) = 1y SV + SO ) + O(d — 4)
Note that:

T(d;m)=

D% _(47r)(d_4)/2/ d’k 1 m?—2
@ T )

2m)d2 k2 m?  (d—2)(d—4)

31/47



Methods for multi-loop computations

Plugging all expansions in and collecting order by order in (d — 4) we get a

chained set of differential equations:

d - 1 1
S = 1 (

2\ p2+4
-1
p*(p* +4)

Ls(o)(4;p2) - 1 ( 1

dp? 2\p2+4
L11
2p>+4

+ higher orders...

st

i) STV p7)

p?

i) sO4;p)

P2

V(4 p%)

47
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They need to be solved one after the order — bottom-up

1. Homogeneous part is the same at every order

d oo 1( 1 1Y),
2 =3 (g - %) 16

2. Solution of homogeneous equation gives the integration kernel!
At order (—1):

2

FO)=Fd) 1) [ T s

3. Problem: solving it we get a square-root

2 p?
f(p*) = pt4 — / dt,/;#
p 2 t+4 t(t+4)

This doesn’t give trivially polylogs !
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Change of variable to Landau variable

_ 2 _ 2
pm Ao VERACVE g X g
X Vi+ a4/t X

so that finally
/P2 [t 1 /Xi dx 1 e
- t+4 t(t+4) @ (1+x) 1+ x Iy

This suggests that from the beginning we derive differential equations in a new
variable x such that

_ 2 2 4 — 2 2
I Uk )V VU e s el V2 i d_ (1=x) d

X P2+ 4++/p? dx x2  dp?
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Differential equation becomes

di’XS(d;x)z K ! *%) +(d —4) <% —iﬂ S(dix)

" 1 1 " 1
2(d—4) \1+4x 1-—x
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And expanded order by order in (d — 4)

A osg - (L L \gtugnge t (L 1
dxS (4'X)_(1+x+1—x>5 (4'X)+2 1+x+1—x

a1 1 ©) 4. [ S WP
S (4,x)—(1+x+1_x)5 @)+ (775~ 55 ) STV

+ higher orders...

A g (1 1 (M) (. L 1Y ey
S (4’X)_<1+X+17X)5 4;x) + 51 (4; x)

36
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Now homogeneous equation doesn't have any more square-roots

%f(x): <1ix+lix> ) = =1

Define then Vn, S (4;x) = f(x) M (x), new equations become

1

A () —
M= e

dx

oy = (L - L) e
dxM (X)_(1+x 2X>M (),

Looking closely it is already clear that these are HPLs with alphabet {0, —1} !
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Integrating and imposing the boundary condition we get:

(i)

sS4 %) = — 5O (4;x) =

1
2 ’

S (4 %) = — % + % (% - 1;) (%2 — G0, %) — %G(0,0,x) n 6(71,o,x))
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When do we get generalised poly-logarithms?

1. We need only linear rational factors in the equation
2. Solution of homogeneous equation is again only linear rational functions

3. > dIn(x—a)=1/(x— a)

Can we be more precise?

39
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Canonical Form by J. Henn

Suppose we are able to find a basis of Master Intergrals such that the system
of differential equations takes the following form:

. C11(S,‘) ClN(si) .
o (MDY e et | (™)
aSk mN(s‘) mN(S')

j en(si) . cwn(si) /

So that the dependence from the kinematics is factorised from d.

If now every function ck(si) = d loga they all become obviously poly-logs!
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Equation for sunrise is not in the right form:

(e R

i 1 ( 1 n 1 )
2(d—4) \1+x 1-—x
Write differential equation for new basis:

m(dix) = 2.0 = [ 2

1—x)(1+x 1—x)(1+x Dk
m(an = N 20 = OO [

It is trivial using the IBPs...
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Differential equations for this basis become:
d ([ m(d,x) \ _ (d —4) 0 0 mi(d, x)
dx m2(d,X) B i (ﬁ - i) m2(de)

The second master represents the sunrise, its equation is

d my(d, x)

(01 -2 (1~ 1) i)

Whose integration is now completely elementary, once expanded in d — 4 !
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Decoupling in d — n and direct integration in poly-logarithms
What when they really don’t decouple, not even in d = 47

Then we are in trouble!

First case when this happens is the massive two-loop sunrise, (see Lecture 2).
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Two-loop sunrise with equal masses > U
m

» It has two Mls

D9kD| D9kD9|
S1(d; %) = ) Sa(d; ’ :/ )
(4P = | 5, b 24P) = | 52 p, b

> They respect two coupled differential equations (m =1, p? = z)

z%Sl(d; z) = (d — 3)Si(d; z) + 352(d; 2)

2z +1)(z+ 9)%52@/; 2) = 2(d — 3)(8 — 3d)(z + 3)51(d; 2)

+ = [(d — 4)2% +10(2 — d)z + 9(8 — 3d)] S»(d; 2)

NI NI N =

+ 2 (d—=2)2zT(d).
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» There exists no general algorithm to solve a coupled system.

» Best thing is usually rewrite it as second order differential equation for
one of the two Mls, and try to solve that one.

» The second order differential equation can be solved only in terms of
Elliptic functions... — 7

» Here still more questions than answers...
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Something to read...:

» Differential Equations for Feynman Graph Amplitudes, E. Remiddi,
[hep-th/9711188]

» Differential Equations for Two-Loop Four-Point Functions, T. Gehrmann, E.
Remiddi, [hep-ph/9912329]

» Feynman Diagrams and Differential Equations, M. Argeri, P. Mastrolia,
[arXiv:0707.4037]

» Harmonic Polylogarithms, E. Remiddi, J. Vermaseren, [hep-ph/9905237]

» From polygons to symbols to polylogarithmic functions, C. Duhr, H. Gangl, J.
Rhodes, [arXiv:1110.0458]

46 / 47



Methods for multi-loop computations

Thanks !!



