
Methods for multi-loop computations

Methods for multi-loop computations

Lorenzo Tancredi

Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

1 / 42

Methods for multi-loop computations

Lecture II

Special Functions

2 / 42

Methods for multi-loop computations

I Introduction:

1. Analytic properties of the Scattering amplitude

I Special Functions 1. Iterated integrals

1. From polylogarithms to GHPLs

2. Chen Iterated integrals

3. Trascendentality in repeated integrations

I Special Functions 2. Elliptic Functions

1. How to introduce a concept of trascendentality ?
2. More questions than answers :-)

3 / 42

Methods for multi-loop computations

Introduction

I Scattering amplitudes (SA) are analytic functions on the
complex plane

I Analytical structure of SA is dictated by interplay of:

1. Number of independent scales
2. Kinematical constraints

I This goes into the functions needed to describe the result !

I Let’s see what happens with Vector Boson Pair Production

4 / 42

Methods for multi-loop computations

Vector boson pair (VBP) production - in massless QCD:

I q q̄ → γ γ

1. 2 independent scales: s + t + u = 0

I q q̄ → Z γ /W± γ

1. 3 independent scales: s + t + u = m2 → with linear kinematics!

I q q̄ → Z Z /W±W±

1. 3 independent scales: s + t +u = 2m2 → with non-linear kinematics!

I q q̄ → Z W

1. 4 independent scales: s + t + u = m2
Z + m2

W → ...

5 / 42

Methods for multi-loop computations

VBP-production - What determines the complexity?

I q q̄ → γ γ (All MIs computed in ≈ 2000)

I q q̄ → Z γ /W± γ (All MIs computed in ≈ 2001)

I q q̄ → Z Z /W±W± (Planar MIs computed in 2013)

I q q̄ → Z W (Planar MIs computed in 2014)

note that:

1. “Discovery” of HPLs came in 1999

2. Extension to 2d-HPLs in 2001 → needed for 1 more scale in V γ !

3. 12 years to “add no more scales” → non-linear kinematics !

6 / 42

Methods for multi-loop computations

Fundamental step in order to complete a multi-loop computation:

Understand the analytical properties of functions that express the result!

Special Functions:

1. Logarithms

2. Polylogarithms

3. Generalised Harmonic-Polylogarithms (GHPLs)

4. Chen iterated integrals

5. Elliptic functions

6. Elliptic Polylogarithms (??)

7 / 42

Methods for multi-loop computations

I Functions needed for VBP-production are the so-called GHPLs.

I GHPLs are a special class of iterated integrals.

I More scales or more complicated kinematical constraints influence
the analyticity structure of these iterated integrals.

I As long as they are GHPLs we can “handle them”...

I “Experience” shows that at some point iterated integrals are not enough.

1. “too many” internal masses
2. “too many” loops
3. “more complicated cut-structure” of non-planar integrals

→ Elliptic Functions... very little is known...

8 / 42

Methods for multi-loop computations

But let us go step by step and start with what we can do!

9 / 42

Methods for multi-loop computations

Special Functions 1.

Iterated integrals (and mainly GHPLs !)

10 / 42

Methods for multi-loop computations

I Many classes of Feynman integrals, once expanded in (d − 4), seem to be
naturally expressed in terms of iterated integrals → (see Lecture 3).

I This is true in particular when there are no masses in the loops
→ large range of applicability in massless QCD!

I Simplest example of iterated integrals are:
Multiple Polylogarithms (MPLs) or
Generalised Harmonic Polylogarithms (GHPLs).

11 / 42

Methods for multi-loop computations

What is an iterated integral ?

Given a set of integration kernels Kj(t) we can define:

I(i ; x) =

∫ x

x0

Ki (t) dt ,

I(j , i ; x) =

∫ x

x0

Kj(t) I(i ; t) dt

...

I(in, ..., i1 ; x) =

∫ x

x0

Kin (t) I(in−1, ..., i1 ; t) dt

12 / 42

Methods for multi-loop computations

This objects appear as the “natural choice” to represent solution of
Feynman integrals once expanded in d − 4.

13 / 42

Methods for multi-loop computations

Step 1. The Logarithm

The logarithm is a trivial example of iterated integral:

log (x) =

∫ x

1

dt

t
, log

(
1− x

a

)
=

∫ x

0

dt

t − a
, ∀a 6= 0 .

With the obvious consequence:

d

dx
log (x) =

1

x
,

d

dx
log
(

1− x

a

)
=

1

x − a
, ∀a 6= 0 .

I Important lesson: differentiating the log we get something easier!

14 / 42

Methods for multi-loop computations

Step 2. The Di-Logarithm (Spence’s function)

Already at 1-loop it is clear that logs are not enough.

Li2(x) = −
∫ x

0

dt

t
log (1− t) =

∞∑
n=1

zn

n2
, ∀x ∈ C− [1,∞).

With the obvious consequence:

d

dx
Li2(x) = −1

x
log (1− x) .

I Important lessons:

1. Differentiating the Li2 we get something easier → the log !
2. The Li2 is an iterated integral with kernel 1/t !

15 / 42

Methods for multi-loop computations

Soon the idea has been generalised to the so-called classical
polylogarithms

Lin+1(x) =

∫ x

0

dt

t
Lin(t) , ∀x ∈ C− [1,∞)

Li1(x) = − log (1− x) .

With the obvious consequence:

d

dx
Lin(x) =

1

x
Lin−1(x) .

I Important lesson:

1. Differentiating the Lin we get something easier → the Lin−1 !
2. Is something missing??

16 / 42

Methods for multi-loop computations

How are the Lin(x) built ?

1. We start with an integration kernel:

Li1(x) = − log (1− x) =

∫ x

0

dt K(t) , with K(t) = − 1

t − 1
.

2. We proceed then integrating on a different kernel

Lin+1(x) =

∫ x

0

dt K̂(t)Lin(t) , with K̂(t) =
1

t
.

3. What happens mixing up the two kernels?

K0(t) =
1

t
, K1(t) =

1

t − 1
.

17 / 42

Methods for multi-loop computations

1. It makes sense to “mix” all 3 possibilities:

K0(t) =
1

t
, K+1(t) =

1

t − 1
, K−1(t) =

1

t + 1
.

2. And define the following functions:

G(0, x) = log (x) =

∫ x

1

dt K0(t) ,

G(±1, x) = log (1∓ x) =

∫ x

0

dt K±1(t) .

3. And finally

G(a, ~n, x) =

∫ x

0

dt Ka(t)G(~n, t) , with a = {0, 1,−1} .

These are the so-called Harmonic Polylogarithms (HPLs).

18 / 42

Methods for multi-loop computations

Generalisation → Generalised Harmonic Polylogarithms (GHPLs)

The GHPLs are defined allowing for any linear rational factor as Kernel !

1.

G (0; x) = log (x) , G (a; x) = log
(

1− x

a

)
, ∀a 6= 0 .

2.

G (~0n; x) =
1

n!
logn (x) , G (a, ~n; x) =

∫ x

0

dt

t − a
G (~n; t)

3. Note that ‘a’ can also be a function of other variables ...

19 / 42

Methods for multi-loop computations

Definitions

Given a GHPL G(~n; x) :

1. ~n is said index vector. G(1, 0,−1, 1; x) → ~n = (1, 0,−1, 1)

2. Number of elements of ~n is said weight w .
G(1, 0,−1, 1; x) has weight w = 4.

3. The weight is often called degree of transcendentality of the GHPLs.
w = 4 → transcendality 4.

4. Set of all indices is said Alphabet.
Alphabet of HPLs is {1, 0,−1}

20 / 42

Methods for multi-loop computations

Important:

1. The index vector contains the analytical structure of the GHPLs.

2. The analytical structure of the S-Matrix goes into the index vector!

3. The more complicated is the cut structure the more complicated will be
the indices of the GHPLs.

21 / 42

Methods for multi-loop computations

Many HPLs can be written as classical Polylogarithms:

G(1, 1; x) =
1

2
log (1− x)2 , G(0, 1; x) = −Li2(x) ,

G(0, 1, 0; x) = 2Li3(x)− log (x)Li2(x) , ...

But obviously not all of them. First examples at weight 4:

G(−1, 0, 0, 1; x) =
∫ x

0

dt

t + 1

∫ t

0

du

u

∫ u

0

dv

v

∫ v

0

dw

w − 1

= −
∫ x

0

dt

t + 1
Li3(t) .

22 / 42

Methods for multi-loop computations

All GHPLs up to weight 3 can be always written as classical
polylogarithms !

23 / 42

Methods for multi-loop computations

Properties of GHPLs:

1. Shuffle algebra (true for iterated integrals):

G(a; x)G(b, c; x) = G(a, b, c; x) + G(b, a, c; x) + G(b, c, a; x)

2. Scale invariance:

G(a1, ..., an; x) = G(λ a1, ..., λ an;λx) , ∀λ ∈ C , an 6= 0

3. Cut structure:
Whenever the variable x becomes larger than any of the indices the
GHPLs develop an imaginary part!

G(a; x) = ln (1− x/a) ∈ R , ∀ x ≤ a .

24 / 42

Methods for multi-loop computations

Two important values:

1.
lim
x→0

G (~n; x) = 0 , ∀~n 6= ~0n

2.
lim
x→a

G (a, ~n; x)→∞ , ∀~n ∈ Cn

25 / 42

Methods for multi-loop computations

I HPLs have been found to be the right set of functions to express
Feynman integrals depending on two independent scales.
(with x some appropriate dimensionless ratio of the two...)

I This is true almost independently on the number of loops.

Examples:

1. 1-,2-,3- and 4-loop massive 2-point functions
in special kinematical configurations: {p2,m2} .

2. 1- and 2-loop QED form-factor: {p2,m2
e}

3. 1-, 2-, 3-loop 4-point functions in massless QCD
with on-shell legs: {t, u} with s = −t − u .

4. many others...

26 / 42

Methods for multi-loop computations

In all these cases one can find an appropriate dimensionless combination of the
two variables which transforms the result in only HPLs:

I x = p2/m2

I x = (
√

p2 + 4m2 −
√

p2)/(
√

p2 + 4m2 +
√

p2)

I x = t/u

I ...

What happens when there are more independent scales?

27 / 42

Methods for multi-loop computations

2d-HPLs are easiest example of GHPLs,
introduced for dealing with three-scale process:

γ∗(p4)→ q(p1) + q̄(p2) + g(p3) , s + t + u = p2
4

Depends on two dimensionless variables:

y =
t

p2
4

, z =
u

p2
4

1. We need HPLs of 1 variables: G({1, 0,−1}; z)

2. Plus 2d-HPLs of the other, with Alphabet

G({1, 0, 1− z ,−z}; y)

28 / 42

Methods for multi-loop computations

The indices represent the different kinematical cuts: γ∗ → qq̄g

z

y

y=1 y+z=0

y+z=1

z=1

2b

3d

1c

4b

4a 4c

1a

1b 3c

3a

3b

4d2c

2a

2d

1d

In this case all cuts are linear functions!

29 / 42

Methods for multi-loop computations

Consider now one more external mass:

q(p1) + q̄(p2)→W (q1) + W (q2)

Where

p2
1 = p2

2 = 0 , q2
1 = q2

2 = m2

and the kinematics is:

s = (p1 + p2)2 > 4m2 , t = (p1 − q1)2 < 0 , u = (p2 − q1)2 < 0

s + t + u = 2m2 .

30 / 42

Methods for multi-loop computations

The two masses generate a more complicated cut structure
(even if their value is the same!):

u = Q2

s = 4Q2

t =
Q 2

t =
0 physical

region

-1 1 2 3 4 5 6
s�Q2

-4

-3

-2

-1

1

2

3
u�Q2

Same number of scales but cuts are together linear and non-linear

31 / 42

Methods for multi-loop computations

Linearity + non-linearity →

1. It is not possible to find a set of variables where all cuts are
linear functions.

2. Parametrizing with

s = m2 (1 + x)2

x
, u = −m2 z , → 0 < x < 1 , x < z <

1

x
.

One can nevertheless write everything in terms of GHPLs!

3. Alphabet is more complicated:

G(~v ; x) , with ~v =

{
0, 1,−1, i ,−i , 1 + i

√
3

2
,

1− i
√

3

2

}
,

G(~f (x) ; z) , with ~f (x) =

{
0,−1, x ,

1

x
,

1 + x2

x
,

1 + x + x2

x
,

x

1 + x + x2

}

32 / 42

Methods for multi-loop computations

Linearity + non-linearity →

1. It is not possible to find a set of variables where all cuts are
linear functions.

2. Parametrizing with

s = m2 (1 + x)2

x
, u = −m2 z , → 0 < x < 1 , x < z <

1

x
.

One can nevertheless write everything in terms of GHPLs!

3. Alphabet is more complicated:

G(~v ; x) , with ~v =

{
0, 1,−1, i ,−i , 1 + i

√
3

2
,

1− i
√

3

2

}
,

G(~f (x) ; z) , with ~f (x) =

{
0,−1, x ,

1

x
,

1 + x2

x
,

1 + x + x2

x
,

x

1 + x + x2

}

32 / 42

Methods for multi-loop computations

I Presence of non-linear indices connected with complex indices in the
other variable.

I Notice that they are solutions of the equations

1 + x2 = 0 , 1 + x + x2 = 0 .

I These indices make the numerical evaluation of these GHPLs much more
complicated.

G(x , z) = ln
(

1− z

x

)
= ln

(z
x
− 1
)
± iπ , ∀z > x

I We will need to take limits on these functions!

33 / 42

Methods for multi-loop computations

“Golden” properties of GHPLs:

I They become easier under differentiation!

I If we differentiate enough times they become a rational function!

I Any properties of rational functions are trivial!

1. If I know rational functions → I know Logs
2. If I know Logs → I know di-Logs
3. If I know do-logs → I know tri-Logs...

I Any property of GHPLs can be proved by differentiating enough times

34 / 42

Methods for multi-loop computations

Special Functions 2.

Elliptic functions

35 / 42

Methods for multi-loop computations

GHPLs are not the end of the story !

1. Massive two-loop Sunrise with equal masses -

&%
'$m

m

m

p2

2. two-scales: p2, m2

3. It should be function of one variable, say z = −p2/m2 .

4. HPLs are unfortunately not enough !

36 / 42

Methods for multi-loop computations

Imaginary part of this graph comes from Cutkosky-Veltman rule:

Im

 -

&%
'$m

m

m

p2
 ≈ K (w2) =

∫ 1

0

dx√
(1− x2)(1− w2x2)

.

where K(w 2) is the complete elliptic integral of the first kind and

w 2 =
(E + m)3(E − 3m)

(E −m)3(E + 3m)
, E =

√
p2

(Exactly true in d = 2, almost the same in d = 4...)

37 / 42

Methods for multi-loop computations

Given the imaginary part we can write a dispersion relation:

S(p2) ≈
∫ ∞
s0

du

u − p2 − iε
Im(S(u))

≈
∫ ∞
s0

du

u − p2 − iε
K(w 2(u)) → ???

38 / 42

Methods for multi-loop computations

There are 3 kinds of complete elliptic integrals

1.

K(w 2) =

∫ 1

0

dx√
(1− x2)(1− w 2x2)

2.

E(w 2) =

∫ 1

0

dx

√
(1− w 2x2)√

(1− x2)

3.

Π(n;w 2) =

∫ 1

0

dx

(1− n x2)
√

(1− x2)(1− w 2x2)

with
0 < w 2 < 1 , 0 < n < 1 .

39 / 42

Methods for multi-loop computations

It is easy to show that any integral of the form:

I(a0, a1, a2, a3) =

∫ 1

0

dx
xa0

(1− n x2)a1
√

(1− x2)a2(1− w2x2)a3
,

can be written as linear combination of the three master integrals:

K (w2) , E (w2) , Π(n;w2) .

plus Elementary Functions...

40 / 42

Methods for multi-loop computations

Problem with elliptic functions is that
they do not get easier under differentiation!

d

dw2
K (w2) =

1

2w2

[
E (w2)

1− w2
− K (w2)

]

differentiating an elliptic function we get again elliptic functions!

Because of this reason a iterated-integral representation is not known...

41 / 42

Methods for multi-loop computations

Still much to do on elliptic functions...

42 / 42

