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» Introduction:

1. Analytic properties of the Scattering amplitude

» Special Functions 1. Iterated integrals
1. From polylogarithms to GHPLs
2. Chen lterated integrals
3. Trascendentality in repeated integrations
» Special Functions 2. Elliptic Functions

1. How to introduce a concept of trascendentality ?
2. More questions than answers :-)
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Introduction

v

Scattering amplitudes (SA) are analytic functions on the
complex plane

v

Analytical structure of SA is dictated by interplay of:

1. Number of independent scales
2. Kinematical constraints

v

This goes into the functions needed to describe the result !

v

Let's see what happens with Vector Boson Pair Production

o
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Vector boson pair (VBP) production - in massless QCD:

> 99—y
1. 2 independent scales: s+t+u=0

> g3 Zy/WEy
1. 3 independent scales: s+ t + u = m* — with linear kinematics!

>»qgg—>227/ w+ w#+
1. 3 independent scales: s+t + u =2 m? — with non-linear kinematics!

» qg—~ZW
1. 4 independent scales: s+t +u=m% + my, — ...
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VBP-production - What determines the complexity?
> gq — vy ( Al MIs computed in =~ 2000 )
> qg— Zvy/ WEy ( All MIs computed in ~ 2001 )
» qGg—~Z2Z ) WHw* ( Planar Mls computed in 2013 )

>» gg—>ZW ( Planar Mls computed in 2014 )

note that:
1. “Discovery” of HPLs came in 1999

2. Extension to 2d-HPLs in 2001 — needed for 1 more scale in V v !

3. 12 years to “add no more scales” — non-linear kinematics !

6
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Fundamental step in order to complete a multi-loop computation:
Understand the analytical properties of functions that express the result!

Special Functions:
1. Logarithms
Polylogarithms
Generalised Harmonic-Polylogarithms (GHPLs)
Chen iterated integrals
Elliptic functions
Elliptic Polylogarithms (77)
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» Functions needed for VBP-production are the so-called GHPLs.

» GHPLs are a special class of iterated integrals.

» More scales or more complicated kinematical constraints influence
the analyticity structure of these iterated integrals.

> As long as they are GHPLs we can “handle them”...
> “Experience” shows that at some point iterated integrals are not enough.
1. “too many" internal masses

2. "too many” loops
3. "more complicated cut-structure” of non-planar integrals

— Elliptic Functions... very little is known...

o
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But let us go step by step and start with what we can do!
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Special Functions 1.

Iterated integrals (and mainly GHPLs !)
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> Many classes of Feynman integrals, once expanded in (d — 4), seem to be
naturally expressed in terms of iterated integrals — (see Lecture 3).

» This is true in particular when there are no masses in the loops
— large range of applicability in massless QCD!

> Simplest example of iterated integrals are:
Multiple Polylogarithms (MPLs) or
Generalised Harmonic Polylogarithms (GHPLs).

o
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What is an iterated integral ?

Given a set of integration kernels Kj(t) we can define:

I(i; x) = /X Ki(t) dt,

X0

Z(,i;x)= /X Ki(t)Z(i;t)dt

X0

I(i,,,...,il;x):/ K,-n(t)I(i,,_l,...,il;t)dt

X0

o
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This objects appear as the “natural choice” to represent solution of
Feynman integrals once expanded in d — 4.
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Step 1. The Logarithm

The logarithm is a trivial example of iterated integral:

Iog(x):/%, |og(1—§>: i, Ya#0.
1

0 t—a

With the obvious consequence:

d 1 d X 1

» Important lesson: differentiating the log we get something easier!
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Step 2. The Di-Logarithm (Spence’s function)

Already at 1-loop it is clear that logs are not enough.

* dt = z"
LiQ(x):—/O Trog1-0=)" %, WweC-[L,x).
n=1

With the obvious consequence:

d 1
& L12(X) = —; |Og (1 — X) .
» Important lessons:

1. Differentiating the Li, we get something easier — the log !
2. The Li, is an iterated integral with kernel 1/t !

o
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Soon the idea has been generalised to the so-called classical
polylogarithms

Linea(x) = /0 % Lin(t), V¥xeC—[Lo0)
Lij(x) = —log (1 — x).

With the obvious consequence:

d _. 1.
o Liy(x) = ;Lln,l(x) .
» Important lesson:

1. Differentiating the Li, we get something easier — the Li,_1 !
2. |s something missing??

16 /4
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How are the Li,(x) built ?

1. We start with an integration kernel:

1

Lil(x):flog(lfx):/oxdifK(t)7 with K(t)=———.

t—1

2. We proceed then integrating on a different kernel

Lint1(x) = /OX dt K(t)Lia(t), with K(t)= %

3. What happens mixing up the two kernels?

Ko(t) = % Ki(t) = —— .

o
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1. It makes sense to “mix" all 3 possibilities:

1 1 1
Ko(t) = ? , K+1(t) = ﬁ 5 Kfl(t) = m .

2. And define the following functions:

G(0,x) = log (x) = / dt Ko(t),

1

G(£1l,x) =log (1 Fx) = /OX dt Kia(t) .

3. And finally

G(a,ﬁ,x):/ dt Ky(t) G(A,t), with a={0,1,—1}.
0

These are the so-called Harmonic Polylogarithms (HPLs).
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Generalisation — Generalised Harmonic Polylogarithms (GHPLs)

The GHPLs are defined allowing for any linear rational factor as Kernel !

1.

G(0; x) = log (x), G(a x):log(lfg), VYa#0.
2.

G(0, X):%Iog"(x)’ G(a,ﬁx)—/oxtita ()

3. Note that ‘a’ can also be a function of other variables ...
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Definitions

Given a GHPL G(7;x) :
1. A'is said index vector. G(1,0,-1,1;x) —» A= (1,0,—1,1)

2. Number of elements of 7 is said weight w.
G(1,0,—1,1; x) has weight w = 4.

3. The weight is often called degree of transcendentality of the GHPLs.

w = 4 — transcendality 4.

4. Set of all indices is said Alphabet.
Alphabet of HPLs is {1,0,—1}
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Important:

1. The index vector contains the analytical structure of the GHPLs.
2. The analytical structure of the S-Matrix goes into the index vector!

3. The more complicated is the cut structure the more complicated will be
the indices of the GHPLs.
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Many HPLs can be written as classical Polylogarithms:
G(1,1;x) = Iog (1—x)?, G(0,1;x) = —Lix(x),
G(0,1,0; x) = 2Li3(x) — log (x) Lip(x), ...

But obviously not all of them. First examples at weight 4:

G(~1,0,0,1 / /d”/d"/
0f+1 w—1

<t
:7/ L.
0 t+1
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All GHPLs up to weight 3 can be always written as classical
polylogarithms !
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Properties of GHPLs:

1. Shuffle algebra (true for iterated integrals):

G(a;x)G(b,c;x) = G(a, b, c; x) + G(b, a,c; x) + G(b, c, a; x)

2. Scale invariance:

G(ai,...,an; x) = G(Xa1,..., Aan; Ax), VAe€C, a, #0

3. Cut structure:
Whenever the variable x becomes larger than any of the indices the
GHPLs develop an imaginary part!

G(a;x)=In(l—-x/a) € R, Vx<a.

o
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Two important values:

1.
lim G(: x)=0,  VA#0,
x—0
2.
lim G(a, M, x) — oo, Ve C"
X—a
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» HPLs have been found to be the right set of functions to express
Feynman integrals depending on two independent scales.
(with x some appropriate dimensionless ratio of the two...)

» This is true almost independently on the number of loops.

Examples:

1. 1-,2-,3- and 4-loop massive 2-point functions
in special kinematical configurations: {p®, m*}.

2. 1- and 2-loop QED form-factor: {p? m?}

3. 1-, 2-, 3-loop 4-point functions in massless QCD
with on-shell legs: {t,u} with s = —t — u.

4. many others...

26/4
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In all these cases one can find an appropriate dimensionless combination of the
two variables which transforms the result in only HPLs:

> X:p2/m2

> = (VAT = ) (/P A+ 5)

> x=t/u

What happens when there are more independent scales?

27 /4
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2d-HPLs are easiest example of GHPLs,
introduced for dealing with three-scale process:

v (ps) = a(p) + a(p2) + g(ps), s+t+u=p;

Depends on two dimensionless variables:

1. We need HPLs of 1 variables: G({1,0,—1};z)

2. Plus 2d-HPLs of the other, with Alphabet
G({17 07 1- Zz, _Z};y)

o
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The indices represent the different kinematical cuts: v* — qgg

z
4a 4c
b
2d
3d
z=1
2b I b 3
1a
1d 3a y
2a 3b
2 | 4d
y+z=1
y=1 y+z=t

In this case all cuts are linear functions!

29 /4
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Consider now one more external mass:

q(p1) + G(p2) = W(q1) + W(q)
Where

and the kinematics is:

s=(p+p)’>4m’, t=(p—-q)’ <0, u=(p—q) <0

s+t+u=2m*.
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The two masses generate a more

(even if their value is the same!):

complicated cut structure

u/Q
30
\ s=ag?
u=0Q*
. . . . ' 0?
-1 1 2 3 S 1o
—1Ir 3o physical
/‘\@, region

Same number of scales but cuts are together linear and non-linear

42
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Linearity 4+ non-linearity —

1. It is not possible to find a set of variables where all cuts are
linear functions.

2. Parametrizing with

1+ x)? 1
s:mQQ, u=-m’z, — 0<x<1, x<z<-=.
X X

One can nevertheless write everything in terms of GHPLs!

o
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Linearity 4+ non-linearity —

1. It is not possible to find a set of variables where all cuts are
linear functions.

2. Parametrizing with

1+ x)? 1
s:m2u, u=-m’z, = 0<x<1, x<z<-=.
X X

One can nevertheless write everything in terms of GHPLs!

3. Alphabet is more complicated:

G(V:x), with 7:{0,1,71,;,7;,#,1*27"/5},

> . > 1 14x% 14+x+x° X
Fx); h f(x)=40,—1,x = :
67 iz) with () = {010, 1, I B X

42
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» Presence of non-linear indices connected with complex indices in the
other variable.

» Notice that they are solutions of the equations

1+x*=0, 1+x+x>=0.

» These indices make the numerical evaluation of these GHPLs much more
complicated.

G(x,z):ln(lfi):In(ifl):l:iw, Vz > x

» We will need to take limits on these functions!
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“Golden” properties of GHPLs:

v

They become easier under differentiation!

v

If we differentiate enough times they become a rational function!

v

Any properties of rational functions are trivial!

1. If | know rational functions — | know Logs
2. If I know Logs — | know di-Logs
3. If I know do-logs — | know tri-Logs...

v

Any property of GHPLs can be proved by differentiating enough times

o
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Special Functions 2.

Elliptic functions



Methods for multi-loop computations

GHPLs are not the end of the story !

P

m
1. Massive two-loop Sunrise with equal masses > U
m

2. two-scales: p2, m?

3. It should be function of one variable, say z = —p2/m2.

4. HPLs are unfortunately not enough !

36/4
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Imaginary part of this graph comes from Cutkosky-Veltman rule:

where K(w?) is the complete elliptic integral of the first kind and

~ (E-m)3(E+3m)’

(Exactly true in d = 2, almost the same in d = 4...)

Im [ — @ ~ K(w?) = /0 N X2;/E(1 =)
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Given the imaginary part we can write a dispersion relation:

SE) =~ [ a(S(w)

2
o U—PpP—e

Q

= 2 ?27?
U7p27l'6K(W (v)) — 777

o
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There are 3 kinds of complete elliptic integrals

1.

N 1 dx

K(w) = /0 VI = x)(1 - w2x?)
2.
E(w?) = /1 dx @
0 (1—x2)
3. 1 d
Nimw?) = /o (1- nx?) \/(1 — x2)(1 — w2x2)

with

0<w?<1, 0<n<l.

o
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It is easy to show that any integral of the form:

X

1
T ao, d1, dz, a :/ dX I
(a0, a1, a2, a3) o (1—nx)a (1 x2)n(l - wixd)

can be written as linear combination of the three master integrals:

K(W2), E(W2), M(n; W2).

plus Elementary Functions...
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Problem with elliptic functions is that
they do not get easier under differentiation!

1 [ E(w?)
T 2w |1 —w?

— K(w?)

differentiating an elliptic function we get again elliptic functions!

Because of this reason a iterated-integral representation is not known...
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Still much to do on elliptic functions...



