Methods for multi-loop computations

Lorenzo Tancredi
Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

Lecture II

Special Functions

- Introduction:

1. Analytic properties of the Scattering amplitude

- Special Functions 1. Iterated integrals

1. From polylogarithms to GHPLs
2. Chen Iterated integrals
3. Trascendentality in repeated integrations

- Special Functions 2. Elliptic Functions

1. How to introduce a concept of trascendentality ?
2. More questions than answers :-)

Introduction

- Scattering amplitudes (SA) are analytic functions on the complex plane
- Analytical structure of SA is dictated by interplay of:

1. Number of independent scales
2. Kinematical constraints

- This goes into the functions needed to describe the result !
- Let's see what happens with Vector Boson Pair Production

Vector boson pair (VBP) production - in massless QCD:

- $q \bar{q} \rightarrow \gamma \gamma$

1. 2 independent scales: $s+t+u=0$

- $q \bar{q} \rightarrow Z \gamma / W^{ \pm} \gamma$

1. $\mathbf{3}$ independent scales: $s+t+u=m^{2} \rightarrow$ with linear kinematics!

- $q \bar{q} \rightarrow Z Z / W^{ \pm} W^{ \pm}$

1. $\mathbf{3}$ independent scales: $s+t+u=2 m^{2} \rightarrow$ with non-linear kinematics!
$-q \bar{q} \rightarrow Z W$
2. 4 independent scales: $s+t+u=m_{Z}^{2}+m_{W}^{2} \rightarrow \ldots$

VBP-production - What determines the complexity?

- $q \bar{q} \rightarrow \gamma \gamma$
- $q \bar{q} \rightarrow Z \gamma / W^{ \pm} \gamma$
- $q \bar{q} \rightarrow Z Z / W^{ \pm} W^{ \pm}$
- $q \bar{q} \rightarrow Z W$
(All MIs computed in ≈ 2000)
(All MIs computed in ≈ 2001)
(Planar MIs computed in 2013)
(Planar MIs computed in 2014)
note that:

1. "Discovery" of HPLs came in 1999
2. Extension to 2d-HPLs in $2001 \rightarrow$ needed for 1 more scale in $V \gamma$!
3. 12 years to "add no more scales" \rightarrow non-linear kinematics !

Fundamental step in order to complete a multi-loop computation:
Understand the analytical properties of functions that express the result!

Special Functions:

1. Logarithms
2. Polylogarithms
3. Generalised Harmonic-Polylogarithms (GHPLs)
4. Chen iterated integrals
5. Elliptic functions
6. Elliptic Polylogarithms (??)

- Functions needed for VBP-production are the so-called GHPLs.
- GHPLs are a special class of iterated integrals.
- More scales or more complicated kinematical constraints influence the analyticity structure of these iterated integrals.
- As long as they are GHPLs we can "handle them"...
- "Experience" shows that at some point iterated integrals are not enough.

1. "too many" internal masses
2. "too many" loops
3. "more complicated cut-structure" of non-planar integrals
\rightarrow Elliptic Functions... very little is known...

But let us go step by step and start with what we can do!

Special Functions 1.

Iterated integrals (and mainly GHPLs !)

- Many classes of Feynman integrals, once expanded in $(d-4)$, seem to be naturally expressed in terms of iterated integrals \rightarrow (see Lecture 3).
- This is true in particular when there are no masses in the loops \rightarrow large range of applicability in massless QCD!
- Simplest example of iterated integrals are:

Multiple Polylogarithms (MPLs) or Generalised Harmonic Polylogarithms (GHPLs).

What is an iterated integral ?

Given a set of integration kernels $K_{j}(t)$ we can define:

$$
\begin{gathered}
\mathcal{I}(i ; x)=\int_{x_{0}}^{x} K_{i}(t) d t, \\
\mathcal{I}(j, i ; x)=\int_{x_{0}}^{x} K_{j}(t) \mathcal{I}(i ; t) d t
\end{gathered}
$$

$$
\mathcal{I}\left(i_{n}, \ldots, i_{1} ; x\right)=\int_{x_{0}}^{x} K_{i_{n}}(t) \mathcal{I}\left(i_{n-1}, \ldots, i_{1} ; t\right) d t
$$

This objects appear as the "natural choice" to represent solution of
Feynman integrals once expanded in $d-4$.

Step 1. The Logarithm

The logarithm is a trivial example of iterated integral:

$$
\log (x)=\int_{1}^{x} \frac{d t}{t}, \quad \log \left(1-\frac{x}{a}\right)=\int_{0}^{x} \frac{d t}{t-a}, \quad \forall a \neq 0 .
$$

With the obvious consequence:

$$
\frac{d}{d x} \log (x)=\frac{1}{x}, \quad \frac{d}{d x} \log \left(1-\frac{x}{a}\right)=\frac{1}{x-a}, \quad \forall a \neq 0 .
$$

- Important lesson: differentiating the log we get something easier!

Step 2. The Di-Logarithm (Spence's function)

Already at 1-loop it is clear that logs are not enough.

$$
\operatorname{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \log (1-t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad \forall x \in \mathbb{C}-[1, \infty)
$$

With the obvious consequence:

$$
\frac{d}{d x} \operatorname{Li}_{2}(x)=-\frac{1}{x} \log (1-x)
$$

- Important lessons:

1. Differentiating the Li ${ }_{2}$ we get something easier \rightarrow the log !
2. The Li_{2} is an iterated integral with kernel $1 / t$!

Soon the idea has been generalised to the so-called classical polylogarithms

$$
\begin{aligned}
& \operatorname{Li}_{n+1}(x)=\int_{0}^{x} \frac{d t}{t} \operatorname{Li}_{n}(t), \quad \forall x \in \mathbb{C}-[1, \infty) \\
& \operatorname{Li}_{1}(x)=-\log (1-x) .
\end{aligned}
$$

With the obvious consequence:

$$
\frac{d}{d x} \operatorname{Li}_{n}(x)=\frac{1}{x} \operatorname{Li}_{n-1}(x) .
$$

- Important lesson:

1. Differentiating the Li_{n} we get something easier \rightarrow the $L i_{n-1}$!
2. Is something missing??

How are the $\operatorname{Li}_{n}(x)$ built ?

1. We start with an integration kernel:

$$
\operatorname{Li}_{1}(x)=-\log (1-x)=\int_{0}^{x} d t K(t), \quad \text { with } \quad K(t)=-\frac{1}{t-1} .
$$

2. We proceed then integrating on a different kernel

$$
\operatorname{Li}_{n+1}(x)=\int_{0}^{x} d t \hat{K}(t) \operatorname{Li}_{n}(t), \quad \text { with } \quad \hat{K}(t)=\frac{1}{t} .
$$

3. What happens mixing up the two kernels?

$$
K_{0}(t)=\frac{1}{t}, \quad K_{1}(t)=\frac{1}{t-1} .
$$

1. It makes sense to "mix" all 3 possibilities:

$$
K_{0}(t)=\frac{1}{t}, \quad K_{+1}(t)=\frac{1}{t-1}, \quad K_{-1}(t)=\frac{1}{t+1} .
$$

2. And define the following functions:

$$
\begin{aligned}
& G(0, x)=\log (x)=\int_{1}^{x} d t K_{0}(t) \\
& G(\pm 1, x)=\log (1 \mp x)=\int_{0}^{x} d t K_{ \pm 1}(t)
\end{aligned}
$$

3. And finally

$$
G(a, \vec{n}, x)=\int_{0}^{x} d t K_{a}(t) G(\vec{n}, t), \quad \text { with } \quad a=\{0,1,-1\}
$$

These are the so-called Harmonic Polylogarithms (HPLs).

Generalisation \rightarrow Generalised Harmonic Polylogarithms (GHPLs)
The GHPLs are defined allowing for any linear rational factor as Kernel !
1.

$$
G(0 ; x)=\log (x), \quad G(a ; x)=\log \left(1-\frac{x}{a}\right), \quad \forall a \neq 0
$$

2.

$$
G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \log ^{n}(x), \quad G(a, \vec{n} ; x)=\int_{0}^{x} \frac{d t}{t-a} G(\vec{n} ; t)
$$

3. Note that 'a' can also be a function of other variables ...

Definitions

Given a GHPL $G(\vec{n} ; x)$:

1. \vec{n} is said index vector. $G(1,0,-1,1 ; x) \rightarrow \vec{n}=(1,0,-1,1)$
2. Number of elements of \vec{n} is said weight w. $G(1,0,-1,1 ; x)$ has weight $w=4$.
3. The weight is often called degree of transcendentality of the GHPLs. $w=4 \rightarrow$ transcendality 4.
4. Set of all indices is said Alphabet. Alphabet of HPLs is $\{1,0,-1\}$

Important:

1. The index vector contains the analytical structure of the GHPLs.
2. The analytical structure of the S-Matrix goes into the index vector!
3. The more complicated is the cut structure the more complicated will be the indices of the GHPLs.

Many HPLs can be written as classical Polylogarithms:

$$
\begin{aligned}
& G(1,1 ; x)=\frac{1}{2} \log (1-x)^{2}, \quad G(0,1 ; x)=-\operatorname{Li}_{2}(x) \\
& G(0,1,0 ; x)=2 \operatorname{Li}_{3}(x)-\log (x) \operatorname{Li}_{2}(x), \ldots
\end{aligned}
$$

But obviously not all of them. First examples at weight 4:

$$
\begin{aligned}
G(-1,0,0,1 ; x) & =\int_{0}^{x} \frac{d t}{t+1} \int_{0}^{t} \frac{d u}{u} \int_{0}^{u} \frac{d v}{v} \int_{0}^{v} \frac{d w}{w-1} \\
& =-\int_{0}^{x} \frac{d t}{t+1} \operatorname{Li}_{3}(t)
\end{aligned}
$$

All GHPLs up to weight 3 can be always written as classical polylogarithms !

Properties of GHPLs:

1. Shuffle algebra (true for iterated integrals):

$$
G(a ; x) G(b, c ; x)=G(a, b, c ; x)+G(b, a, c ; x)+G(b, c, a ; x)
$$

2. Scale invariance:

$$
G\left(a_{1}, \ldots, a_{n} ; x\right)=G\left(\lambda a_{1}, \ldots, \lambda a_{n} ; \lambda x\right), \quad \forall \lambda \in \mathbb{C}, a_{n} \neq 0
$$

3. Cut structure:

Whenever the variable x becomes larger than any of the indices the GHPLs develop an imaginary part!

$$
G(a ; x)=\ln (1-x / a) \in \mathbb{R}, \quad \forall x \leq a .
$$

Two important values:

1.

$$
\lim _{x \rightarrow 0} G(\vec{n} ; x)=0, \quad \forall \vec{n} \neq \overrightarrow{0}_{n}
$$

2.

$$
\lim _{x \rightarrow a} G(a, \vec{n} ; x) \rightarrow \infty, \quad \forall \vec{n} \in \mathbb{C}^{n}
$$

- HPLs have been found to be the right set of functions to express Feynman integrals depending on two independent scales. (with \times some appropriate dimensionless ratio of the two...)
- This is true almost independently on the number of loops.

Examples:

1. 1-,2-,3- and 4-loop massive 2-point functions in special kinematical configurations: $\left\{p^{2}, m^{2}\right\}$.
2. 1- and 2-loop QED form-factor: $\left\{p^{2}, m_{e}^{2}\right\}$
3. 1-, 2-, 3-loop 4-point functions in massless QCD with on-shell legs: $\{t, u\}$ with $s=-t-u$.
4. many others...

In all these cases one can find an appropriate dimensionless combination of the two variables which transforms the result in only HPLs:

- $x=p^{2} / m^{2}$
- $x=\left(\sqrt{p^{2}+4 m^{2}}-\sqrt{p^{2}}\right) /\left(\sqrt{p^{2}+4 m^{2}}+\sqrt{p^{2}}\right)$
- $x=t / u$

What happens when there are more independent scales?

2d-HPLs are easiest example of GHPLs, introduced for dealing with three-scale process:

$$
\gamma^{*}\left(p_{4}\right) \rightarrow q\left(p_{1}\right)+\bar{q}\left(p_{2}\right)+g\left(p_{3}\right), \quad s+t+u=p_{4}^{2}
$$

Depends on two dimensionless variables:

$$
y=\frac{t}{p_{4}^{2}}, \quad z=\frac{u}{p_{4}^{2}}
$$

1. We need HPLs of 1 variables: $G(\{1,0,-1\} ; z)$
2. Plus 2d-HPLs of the other, with Alphabet

$$
G(\{1,0,1-z,-z\} ; y)
$$

The indices represent the different kinematical cuts: $\gamma^{*} \rightarrow q \bar{q} g$

In this case all cuts are linear functions!

Consider now one more external mass:

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow W\left(q_{1}\right)+W\left(q_{2}\right)
$$

Where

$$
p_{1}^{2}=p_{2}^{2}=0, \quad q_{1}^{2}=q_{2}^{2}=m^{2}
$$

and the kinematics is:

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2}>4 m^{2}, \quad t=\left(p_{1}-q_{1}\right)^{2}<0, \quad u=\left(p_{2}-q_{1}\right)^{2}<0 \\
s+t+u=2 m^{2} .
\end{gathered}
$$

The two masses generate a more complicated cut structure (even if their value is the same!):

Same number of scales but cuts are together linear and non-linear

Linearity + non-linearity \rightarrow

1. It is not possible to find a set of variables where all cuts are linear functions.
2. Parametrizing with

$$
s=m^{2} \frac{(1+x)^{2}}{x}, \quad u=-m^{2} z, \quad \rightarrow \quad 0<x<1, x<z<\frac{1}{x}
$$

One can nevertheless write everything in terms of GHPLs!
3. Alphabet is more complicated:

$G(\vec{f}(x) ; z)$

Linearity + non-linearity \rightarrow

1. It is not possible to find a set of variables where all cuts are linear functions.
2. Parametrizing with

$$
s=m^{2} \frac{(1+x)^{2}}{x}, \quad u=-m^{2} z, \quad \rightarrow \quad 0<x<1, \quad x<z<\frac{1}{x}
$$

One can nevertheless write everything in terms of GHPLs!
3. Alphabet is more complicated:

$$
\begin{aligned}
G(\vec{v} ; x), \quad \text { with } \quad \vec{v} & =\left\{0,1,-1, i,-i, \frac{1+i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}\right\} \\
G(\vec{f}(x) ; z), \quad \text { with } \vec{f}(x) & =\left\{0,-1, x, \frac{1}{x}, \frac{1+x^{2}}{x}, \frac{1+x+x^{2}}{x}, \frac{x}{1+x+x^{2}}\right\}
\end{aligned}
$$

- Presence of non-linear indices connected with complex indices in the other variable.
- Notice that they are solutions of the equations

$$
1+x^{2}=0, \quad 1+x+x^{2}=0
$$

- These indices make the numerical evaluation of these GHPLs much more complicated.

$$
G(x, z)=\ln \left(1-\frac{z}{x}\right)=\ln \left(\frac{z}{x}-1\right) \pm i \pi, \quad \forall z>x
$$

- We will need to take limits on these functions!

"Golden" properties of GHPLs:

- They become easier under differentiation!
- If we differentiate enough times they become a rational function!
- Any properties of rational functions are trivial!

1. If I know rational functions \rightarrow I know Logs
2. If I know Logs \rightarrow I know di-Logs
3. If I know do-logs \rightarrow I know tri-Logs...

- Any property of GHPLs can be proved by differentiating enough times

Special Functions 2.

Elliptic functions

GHPLs are not the end of the story !

1. Massive two-loop Sunrise with equal masses

2. two-scales: p^{2}, m^{2}
3. It should be function of one variable, say $z=-p^{2} / m^{2}$.
4. HPLs are unfortunately not enough !

Imaginary part of this graph comes from Cutkosky-Veltman rule:

where $K\left(w^{2}\right)$ is the complete elliptic integral of the first kind and

$$
w^{2}=\frac{(E+m)^{3}(E-3 m)}{(E-m)^{3}(E+3 m)}, \quad E=\sqrt{p^{2}}
$$

(Exactly true in $d=2$, almost the same in $d=4 \ldots$)

Given the imaginary part we can write a dispersion relation:

$$
\begin{aligned}
S\left(p^{2}\right) & \approx \int_{s_{0}}^{\infty} \frac{d u}{u-p^{2}-i \epsilon} \operatorname{Im}(S(u)) \\
& \approx \int_{s_{0}}^{\infty} \frac{d u}{u-p^{2}-i \epsilon} K\left(w^{2}(u)\right) \quad \rightarrow \quad ? ? ?
\end{aligned}
$$

There are 3 kinds of complete elliptic integrals
1.

$$
K\left(w^{2}\right)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-w^{2} x^{2}\right)}}
$$

2.

$$
E\left(w^{2}\right)=\int_{0}^{1} d x \frac{\sqrt{\left(1-w^{2} x^{2}\right)}}{\sqrt{\left(1-x^{2}\right)}}
$$

3.

$$
\Pi\left(n ; w^{2}\right)=\int_{0}^{1} \frac{d x}{\left(1-n x^{2}\right) \sqrt{\left(1-x^{2}\right)\left(1-w^{2} x^{2}\right)}}
$$

with

$$
0<w^{2}<1, \quad 0<n<1
$$

It is easy to show that any integral of the form:

$$
\mathcal{I}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\int_{0}^{1} d x \frac{x^{a_{0}}}{\left(1-n x^{2}\right)^{a_{1}} \sqrt{\left(1-x^{2}\right)^{a_{2}}\left(1-w^{2} x^{2}\right)^{a_{3}}}},
$$

can be written as linear combination of the three master integrals:

$$
K\left(w^{2}\right), \quad E\left(w^{2}\right), \quad \Pi\left(n ; w^{2}\right) .
$$

plus Elementary Functions...

Problem with elliptic functions is that they do not get easier under differentiation!

$$
\frac{d}{d w^{2}} K\left(w^{2}\right)=\frac{1}{2 w^{2}}\left[\frac{E\left(w^{2}\right)}{1-w^{2}}-K\left(w^{2}\right)\right]
$$

differentiating an elliptic function we get again elliptic functions!
Because of this reason a iterated-integral representation is not known...

Still much to do on elliptic functions...

