
Methods for multi-loop computations

Methods for multi-loop computations

Lorenzo Tancredi

Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

1 / 36

Methods for multi-loop computations

Lecture I

Reduction to Master Integrals

2 / 36

Methods for multi-loop computations

I Introduction:

1. Multi-loop amplitudes
2. Tensor Reduction → scalar integrals

I Identities for reduction to MIs:

1. Integration-by-parts identities
2. Lorentz identities
3. Symmetry relations
4. Schouten identities

I The Laporta Algorithm

1. Reduze 2.

3 / 36

Methods for multi-loop computations

Introduction

4 / 36

Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD

Cross section for N-particle scattering process:

σN = σ
(0)
N + σ

(1)
N

(αS

2π

)
+ σ

(2)
N

(αS

2π

)2

+ ...

I LO:

σ
(0)
N ≈

∫
|M(0)

N |
2 dΦN

I NLO:

σ
(1)
N ≈

∫
2Re

(
M(0)∗

N M(1)
N

)
dΦN +

∫
|M(0)

N+1|
2 dΦN+1

I NNLO:

σ(2)
n ≈

∫
2Re

(
M(0)∗

N M(2)
N

)
dΦN +

∫
2Re

(
M(0)∗

N+1M
(1)
N+1

)
dΦN+1

+

∫
|M(0)

N+2|
2 dΦN+2

I
5 / 36

Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD

Cross section for N-particle scattering process:

σN = σ
(0)
N + σ

(1)
N

(αS

2π

)
+ σ

(2)
N

(αS

2π

)2

+ ...

I LO:

σ
(0)
N ≈

∫
|M(0)

N |
2 dΦN

I NLO:

σ
(1)
N ≈

∫
2Re

(
M(0)∗

N M(1)
N

)
dΦN +

∫
|M(0)

N+1|
2 dΦN+1

I NNLO:

σ(2)
n ≈

∫
2Re

(
M(0)∗

N M(2)
N

)
dΦN +

∫
2Re

(
M(0)∗

N+1M
(1)
N+1

)
dΦN+1

+

∫
|M(0)

N+2|
2 dΦN+2

I
5 / 36

Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD

Cross section for N-particle scattering process:

σN = σ
(0)
N + σ

(1)
N

(αS

2π

)
+ σ

(2)
N

(αS

2π

)2

+ ...

I LO:

σ
(0)
N ≈

∫
|M(0)

N |
2 dΦN

I NLO:

σ
(1)
N ≈

∫
2Re

(
M(0)∗

N M(1)
N

)
dΦN +

∫
|M(0)

N+1|
2 dΦN+1

I NNLO:

σ(2)
n ≈

∫
2Re

(
M(0)∗

N M(2)
N

)
dΦN +

∫
2Re

(
M(0)∗

N+1M
(1)
N+1

)
dΦN+1

+

∫
|M(0)

N+2|
2 dΦN+2

I
5 / 36

Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD

Cross section for N-particle scattering process:

σN = σ
(0)
N + σ

(1)
N

(αS

2π

)
+ σ

(2)
N

(αS

2π

)2

+ ...

I LO:

σ
(0)
N ≈

∫
|M(0)

N |
2 dΦN

I NLO:

σ
(1)
N ≈

∫
2Re

(
M(0)∗

N M(1)
N

)
dΦN +

∫
|M(0)

N+1|
2 dΦN+1

I NNLO:

σ(2)
n ≈

∫
2Re

(
M(0)∗

N M(2)
N

)
dΦN +

∫
2Re

(
M(0)∗

N+1M
(1)
N+1

)
dΦN+1

+

∫
|M(0)

N+2|
2 dΦN+2

I
5 / 36

Methods for multi-loop computations

Point is: To get to NNLO we miss M(2)
N ...

I For a QCD process with N external particles
all momenta p1, ..., pN are incoming

I Scattering amplitude is MN = S(p1, ..., pN)

I How can we compute it up to two loops or more?

6 / 36

Methods for multi-loop computations

Point is: To get to NNLO we miss M(2)
N ...

I For a QCD process with N external particles
all momenta p1, ..., pN are incoming

I Scattering amplitude is MN = S(p1, ..., pN)

I How can we compute it up to two loops or more?

6 / 36

Methods for multi-loop computations

Point is: To get to NNLO we miss M(2)
N ...

I For a QCD process with N external particles
all momenta p1, ..., pN are incoming

I Scattering amplitude is MN = S(p1, ..., pN)

I How can we compute it up to two loops or more?

6 / 36

Methods for multi-loop computations

Point is: To get to NNLO we miss M(2)
N ...

I For a QCD process with N external particles
all momenta p1, ..., pN are incoming

I Scattering amplitude is MN = S(p1, ..., pN)

I How can we compute it up to two loops or more?

6 / 36

Methods for multi-loop computations

I In perturbative QCD:

S(p1, ..., pN) = S(0)(p1, ..., pN) +
(αS

2π

)
S(1)(p1, ..., pN)

+
(αS

2π

)2

S(2)(p1, ..., pN) + ...

I Every term can be expanded in Feynman diagrams

→ Diagrammatic approach to multi-loop computations !

7 / 36

Methods for multi-loop computations

I In perturbative QCD:

S(p1, ..., pN) = S(0)(p1, ..., pN) +
(αS

2π

)
S(1)(p1, ..., pN)

+
(αS

2π

)2

S(2)(p1, ..., pN) + ...

I Every term can be expanded in Feynman diagrams

→ Diagrammatic approach to multi-loop computations !

7 / 36

Methods for multi-loop computations

Example (in massless QCD): q(p1) + q̄(p2)→ Z (p3) + Z (p4)

I S(0)(p1, ..., p4) ≈ 2 tree-level diagrams

I S(1)(p1, ..., p4) ≈ 10 one-loop diagrams

I S(2)(p1, ..., p4) ≈ 143 two-loop diagrams

I S(3)(p1, ..., p4) ≈ 2922 three-loop diagrams

I ...

There is no escape from combinatorics!
Things become very soon very nasty !

8 / 36

Methods for multi-loop computations

Example (in massless QCD): q(p1) + q̄(p2)→ Z (p3) + Z (p4)

I S(0)(p1, ..., p4) ≈ 2 tree-level diagrams

I S(1)(p1, ..., p4) ≈ 10 one-loop diagrams

I S(2)(p1, ..., p4) ≈ 143 two-loop diagrams

I S(3)(p1, ..., p4) ≈ 2922 three-loop diagrams

I ...

There is no escape from combinatorics!
Things become very soon very nasty !

8 / 36

Methods for multi-loop computations

qq̄ → ZZ at l-loop, take sum of all Feynman Diagrams:

S(l)(p1, ..., p4) =
M∑
f =1

F (l)
f (p1, ..., p4)

where:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

 u(p1)

with:

I u(p1), ū(p2) are the spinors of the incoming quarks.

I Dj are t different propagators.

I Tµν(pi ; ki) is a rank two tensor built out of {pµi , k
µ
i , γ

µ
i , g

µν}

(This structure easily generalises to processes with more/different external legs)
9 / 36

Methods for multi-loop computations

qq̄ → ZZ at l-loop, take sum of all Feynman Diagrams:

S(l)(p1, ..., p4) =
M∑
f =1

F (l)
f (p1, ..., p4)

where:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

 u(p1)

with:

I u(p1), ū(p2) are the spinors of the incoming quarks.

I Dj are t different propagators.

I Tµν(pi ; ki) is a rank two tensor built out of {pµi , k
µ
i , γ

µ
i , g

µν}

(This structure easily generalises to processes with more/different external legs)
9 / 36

Methods for multi-loop computations

qq̄ → ZZ at l-loop, take sum of all Feynman Diagrams:

S(l)(p1, ..., p4) =
M∑
f =1

F (l)
f (p1, ..., p4)

where:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

 u(p1)

with:

I u(p1), ū(p2) are the spinors of the incoming quarks.

I Dj are t different propagators.

I Tµν(pi ; ki) is a rank two tensor built out of {pµi , k
µ
i , γ

µ
i , g

µν}

(This structure easily generalises to processes with more/different external legs)
9 / 36

Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor Tµν :

∫
Ddk

kµkν

(k2 + m2)2
= C(m2) gµν ,

gµν
∫

Ddk
kµkν

(k2 + m2)2
= C(m2) d →

∫
Ddk

(
1

k2 + m2
−

m2

(k2 + m2)2

)
= C(m2) d

so that

C(m2) =
1

d

(∫
Ddk

1

k2 + m2
−m2

∫
Ddk

1

(k2 + m2)2

)

10 / 36

Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor Tµν :

∫
Ddk

kµkν

(k2 + m2)2
= C(m2) gµν ,

gµν
∫

Ddk
kµkν

(k2 + m2)2
= C(m2) d →

∫
Ddk

(
1

k2 + m2
−

m2

(k2 + m2)2

)
= C(m2) d

so that

C(m2) =
1

d

(∫
Ddk

1

k2 + m2
−m2

∫
Ddk

1

(k2 + m2)2

)

10 / 36

Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor Tµν :

∫
Ddk

kµkν

(k2 + m2)2
= C(m2) gµν ,

gµν
∫

Ddk
kµkν

(k2 + m2)2
= C(m2) d →

∫
Ddk

(
1

k2 + m2
−

m2

(k2 + m2)2

)
= C(m2) d

so that

C(m2) =
1

d

(∫
Ddk

1

k2 + m2
−m2

∫
Ddk

1

(k2 + m2)2

)

10 / 36

Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor Tµν :

∫
Ddk

kµkν

(k2 + m2)2
= C(m2) gµν ,

gµν
∫

Ddk
kµkν

(k2 + m2)2
= C(m2) d →

∫
Ddk

(
1

k2 + m2
−

m2

(k2 + m2)2

)
= C(m2) d

so that

C(m2) =
1

d

(∫
Ddk

1

k2 + m2
−m2

∫
Ddk

1

(k2 + m2)2

)

10 / 36

Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor Tµν :

∫
Ddk

kµkν

(k2 + m2)2
= C(m2) gµν ,

gµν
∫

Ddk
kµkν

(k2 + m2)2
= C(m2) d →

∫
Ddk

(
1

k2 + m2
−

m2

(k2 + m2)2

)
= C(m2) d

so that

C(m2) =
1

d

(∫
Ddk

1

k2 + m2
−m2

∫
Ddk

1

(k2 + m2)2

)

10 / 36

Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

∫
Ddk

kµkν

(k2 + m2)((k − p)2 + m2)
= C1(m2, p2) gµν + C2(m2, p2)

pµpν

p2
,

multiplying this equation once by gµν , once by pµpν∫
Ddk

k2

D1D2
= d C1(m2, p2) + C2(m2, p2)

∫
Ddk

(k · p)2

D1D2
= p2

[
C1(m2, p2) + C2(m2, p2)

]

and inverting for C1 and C2 we find:

C1(m2, p2) =
1

(d − 1)

(∫
Ddk

k2

D1 D2
−

1

p2

∫
Ddk

(k · p)2

D1D2

)
C2(m2, p2) =

1

(d − 1)

(
d

p2

∫
Ddk

(k · p)2

D1D2
−
∫

Ddk
k2

D1 D2

)
11 / 36

Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

∫
Ddk

kµkν

(k2 + m2)((k − p)2 + m2)
= C1(m2, p2) gµν + C2(m2, p2)

pµpν

p2
,

multiplying this equation once by gµν , once by pµpν∫
Ddk

k2

D1D2
= d C1(m2, p2) + C2(m2, p2)

∫
Ddk

(k · p)2

D1D2
= p2

[
C1(m2, p2) + C2(m2, p2)

]

and inverting for C1 and C2 we find:

C1(m2, p2) =
1

(d − 1)

(∫
Ddk

k2

D1 D2
−

1

p2

∫
Ddk

(k · p)2

D1D2

)
C2(m2, p2) =

1

(d − 1)

(
d

p2

∫
Ddk

(k · p)2

D1D2
−
∫

Ddk
k2

D1 D2

)
11 / 36

Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

∫
Ddk

kµkν

(k2 + m2)((k − p)2 + m2)
= C1(m2, p2) gµν + C2(m2, p2)

pµpν

p2
,

multiplying this equation once by gµν , once by pµpν∫
Ddk

k2

D1D2
= d C1(m2, p2) + C2(m2, p2)

∫
Ddk

(k · p)2

D1D2
= p2

[
C1(m2, p2) + C2(m2, p2)

]

and inverting for C1 and C2 we find:

C1(m2, p2) =
1

(d − 1)

(∫
Ddk

k2

D1 D2
−

1

p2

∫
Ddk

(k · p)2

D1D2

)
C2(m2, p2) =

1

(d − 1)

(
d

p2

∫
Ddk

(k · p)2

D1D2
−
∫

Ddk
k2

D1 D2

)
11 / 36

Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

∫
Ddk

kµkν

(k2 + m2)((k − p)2 + m2)
= C1(m2, p2) gµν + C2(m2, p2)

pµpν

p2
,

multiplying this equation once by gµν , once by pµpν∫
Ddk

k2

D1D2
= d C1(m2, p2) + C2(m2, p2)

∫
Ddk

(k · p)2

D1D2
= p2

[
C1(m2, p2) + C2(m2, p2)

]

and inverting for C1 and C2 we find:

C1(m2, p2) =
1

(d − 1)

(∫
Ddk

k2

D1 D2
−

1

p2

∫
Ddk

(k · p)2

D1D2

)
C2(m2, p2) =

1

(d − 1)

(
d

p2

∫
Ddk

(k · p)2

D1D2
−
∫

Ddk
k2

D1 D2

)
11 / 36

Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

∫
Ddk

kµkν

(k2 + m2)((k − p)2 + m2)
= C1(m2, p2) gµν + C2(m2, p2)

pµpν

p2
,

multiplying this equation once by gµν , once by pµpν∫
Ddk

k2

D1D2
= d C1(m2, p2) + C2(m2, p2)

∫
Ddk

(k · p)2

D1D2
= p2

[
C1(m2, p2) + C2(m2, p2)

]

and inverting for C1 and C2 we find:

C1(m2, p2) =
1

(d − 1)

(∫
Ddk

k2

D1 D2
−

1

p2

∫
Ddk

(k · p)2

D1D2

)
C2(m2, p2) =

1

(d − 1)

(
d

p2

∫
Ddk

(k · p)2

D1D2
−
∫

Ddk
k2

D1 D2

)
11 / 36

Methods for multi-loop computations

These results can be generalised to any number of loops (qq̄ → ZZ again):

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

)
u(p1)

becomes:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµν
i (pj)

)
u(p1)

where now all dependence from loop momenta kj is contained into the scalar
coeffcients Ci .

Tensorial structure is factored out from integrals!

We have to compute the Ci (p1, ..., pN) !

12 / 36

Methods for multi-loop computations

These results can be generalised to any number of loops (qq̄ → ZZ again):

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

)
u(p1)

becomes:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµν
i (pj)

)
u(p1)

where now all dependence from loop momenta kj is contained into the scalar
coeffcients Ci .

Tensorial structure is factored out from integrals!

We have to compute the Ci (p1, ..., pN) !

12 / 36

Methods for multi-loop computations

These results can be generalised to any number of loops (qq̄ → ZZ again):

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(∫ l∏
j=1

Ddkj
Tµν(pi ; ki)

Db1
1 ...Dbt

t

)
u(p1)

becomes:

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµν
i (pj)

)
u(p1)

where now all dependence from loop momenta kj is contained into the scalar
coeffcients Ci .

Tensorial structure is factored out from integrals!

We have to compute the Ci (p1, ..., pN) !

12 / 36

Methods for multi-loop computations

Through tensor reduction every coefficients is given by a linear
combination of scalar integrals of the form

I(pj) =

∫ l∏
i=1

Ddki
Sa1

1 ...S
aρ
ρ

Db1
1 ...Dbτ

τ

where:

ρ scal. prod. Sj = qn · qm , with qi = p1, ..., pN , k1, ..., kl ,

τ different (euclidean) propagators Dj = (q2
j + m2

j) ,

and aj , bj are just integer powers.

13 / 36

Methods for multi-loop computations

Irreducible Scalar Products

Given N external momenta, l loop momenta

ρ = l

(
N +

l

2
− 1

2

)
scalar prod. with 1 loop momentum

Given the τ different propagators, if ρ > τ −→ σ = ρ− τ irreducible
scalar products

14 / 36

Methods for multi-loop computations

Irreducible Scalar Products

Given N external momenta, l loop momenta

ρ = l

(
N +

l

2
− 1

2

)
scalar prod. with 1 loop momentum

Given the τ different propagators, if ρ > τ −→ σ = ρ− τ irreducible
scalar products

14 / 36

Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:∫
Ddk

k · p
D1 D2

, with D1 = k2 + m2 , D2 = ((k − p)2 + m2) ,

then:

k · p =
1

2

[
(k2 + m2)− ((k − p)2 + m2) + p2

]
=

1

2

[
D1 − D2 + p2

]
and so finally:∫

Ddk
k · p
D1 D2

=
1

2

(∫
Ddk

1

D1
−
∫

Ddk
1

D2
+ p2

∫
Ddk

1

D1D2

)

=
p2

2

∫
Ddk

1

D1D2

−→ k · p is a reducible scalar product !

15 / 36

Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:∫
Ddk

k · p
D1 D2

, with D1 = k2 + m2 , D2 = ((k − p)2 + m2) ,

then:

k · p =
1

2

[
(k2 + m2)− ((k − p)2 + m2) + p2

]
=

1

2

[
D1 − D2 + p2

]
and so finally:∫

Ddk
k · p
D1 D2

=
1

2

(∫
Ddk

1

D1
−
∫

Ddk
1

D2
+ p2

∫
Ddk

1

D1D2

)

=
p2

2

∫
Ddk

1

D1D2

−→ k · p is a reducible scalar product !

15 / 36

Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:∫
Ddk

k · p
D1 D2

, with D1 = k2 + m2 , D2 = ((k − p)2 + m2) ,

then:

k · p =
1

2

[
(k2 + m2)− ((k − p)2 + m2) + p2

]
=

1

2

[
D1 − D2 + p2

]
and so finally:∫

Ddk
k · p
D1 D2

=
1

2

(∫
Ddk

1

D1
−
∫

Ddk
1

D2
+ p2

∫
Ddk

1

D1D2

)

=
p2

2

∫
Ddk

1

D1D2

−→ k · p is a reducible scalar product !

15 / 36

Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:∫
Ddk

k · p
D1 D2

, with D1 = k2 + m2 , D2 = ((k − p)2 + m2) ,

then:

k · p =
1

2

[
(k2 + m2)− ((k − p)2 + m2) + p2

]
=

1

2

[
D1 − D2 + p2

]
and so finally:∫

Ddk
k · p
D1 D2

=
1

2

(∫
Ddk

1

D1
−
∫

Ddk
1

D2
+ p2

∫
Ddk

1

D1D2

)

=
p2

2

∫
Ddk

1

D1D2

−→ k · p is a reducible scalar product !

15 / 36

Methods for multi-loop computations

Note that:

I at 1 loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products k · k and k · p

2. 3 legs: 3 denominators, and 3 scalar products k · k, k · p1, k · p2

3. etc ...

I Starting from two loops this is not necessarily true anymore!

16 / 36

Methods for multi-loop computations

Note that:

I at 1 loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products k · k and k · p

2. 3 legs: 3 denominators, and 3 scalar products k · k, k · p1, k · p2

3. etc ...

I Starting from two loops this is not necessarily true anymore!

16 / 36

Methods for multi-loop computations

Example: massive two-loop Sunrise -

&%
'$m1

m2

m3

p2

3 Denominators: D1 = k2 + m2
1 , D2 = l2 + m2

2 , D3 = (k − l − p)2 + m2
3

5 Scal. products: S1 = k · k , S2 = l · l , S3 = k · l , S4 = k · p , S5 = l · p

2 scalar products are irreducible! → {S4 = k · p , S5 = l · p}

So the most general integral in two-loop sunrise graph is

I(n1, n2, n3; n4, n5) =

∫
Ddk Dd l

Sn4
4 Sn5

5

Dn1
1 Dn2

2 Dn3
3

with n1, n2, n3, n4, n5 ≥ 0 .

17 / 36

Methods for multi-loop computations

Example: massive two-loop Sunrise -

&%
'$m1

m2

m3

p2

3 Denominators: D1 = k2 + m2
1 , D2 = l2 + m2

2 , D3 = (k − l − p)2 + m2
3

5 Scal. products: S1 = k · k , S2 = l · l , S3 = k · l , S4 = k · p , S5 = l · p

2 scalar products are irreducible! → {S4 = k · p , S5 = l · p}

So the most general integral in two-loop sunrise graph is

I(n1, n2, n3; n4, n5) =

∫
Ddk Dd l

Sn4
4 Sn5

5

Dn1
1 Dn2

2 Dn3
3

with n1, n2, n3, n4, n5 ≥ 0 .

17 / 36

Methods for multi-loop computations

Alternative approach → integral families (see Reduze 2)

I Instead of irreducible scalar products we introduce auxiliary
denominators

I For example, two-loop sunrise again. Instead of taking

{D1 , D2 , D3 , k · p , l · p}

I We can take two new denominators{
D1 , D2 , D3 , D4 = (k − p)2 , D5 = (l − p)2

}

18 / 36

Methods for multi-loop computations

I Integral Family for reduction of the two-loop massive sunrise becomes:

I(n1, n2, n3, n4, n5) =

∫
Ddk Dd l

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, n1, n2, n3 ≥ 0 , n4, n5 ∈ Z .

I In this way all scalar products can be expressed as linear combinations of
the 5 denominators !

I The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

19 / 36

Methods for multi-loop computations

I Integral Family for reduction of the two-loop massive sunrise becomes:

I(n1, n2, n3, n4, n5) =

∫
Ddk Dd l

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, n1, n2, n3 ≥ 0 , n4, n5 ∈ Z .

I In this way all scalar products can be expressed as linear combinations of
the 5 denominators !

I The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

19 / 36

Methods for multi-loop computations

I Integral Family for reduction of the two-loop massive sunrise becomes:

I(n1, n2, n3, n4, n5) =

∫
Ddk Dd l

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, n1, n2, n3 ≥ 0 , n4, n5 ∈ Z .

I In this way all scalar products can be expressed as linear combinations of
the 5 denominators !

I The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

19 / 36

Methods for multi-loop computations

I After removing all reducible scalar products we are left with:

I(pj) =

∫ l∏
i=1

Ddki
Sa1

1 ...Saσ
σ

Db1
1 ...Dbτ

τ

where aj , bj ≥ 0.

I Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their
powers and of any scalar products !

I Sub-topology tree is obtained removing one or more propagators in
all possible ways.

20 / 36

Methods for multi-loop computations

I After removing all reducible scalar products we are left with:

I(pj) =

∫ l∏
i=1

Ddki
Sa1

1 ...Saσ
σ

Db1
1 ...Dbτ

τ

where aj , bj ≥ 0.

I Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their
powers and of any scalar products !

I Sub-topology tree is obtained removing one or more propagators in
all possible ways.

20 / 36

Methods for multi-loop computations

I After removing all reducible scalar products we are left with:

I(pj) =

∫ l∏
i=1

Ddki
Sa1

1 ...Saσ
σ

Db1
1 ...Dbτ

τ

where aj , bj ≥ 0.

I Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their
powers and of any scalar products !

I Sub-topology tree is obtained removing one or more propagators in
all possible ways.

20 / 36

Methods for multi-loop computations

Example: the sub-topology tree of the two-loop Sunrise is:

1. {D1,D2,D3 } →
∫

Ddk Dd l
Sn4

4 Sn5
5

Dn1
1 Dn2

2 Dn3
3

with n1, n2, n3 > 0 , n4, n5 ≥ 0

2. {D1,D2 } →
∫

Ddk Dd l
Sn4

4 Sn5
5

Dn1
1 Dn2

2

with n1, n2 > 0 , n4, n5 ≥ 0

3. {D1,D3 } →
∫

Ddk Dd l
Sn4

4 Sn5
5

Dn1
1 Dn3

3

with n1, n3 > 0 , n4, n5 ≥ 0

4. {D2,D3 } →
∫

Ddk Dd l
Sn4

4 Sn5
5

Dn2
2 Dn3

3

with n2, n3 > 0 , n4, n5 ≥ 0

21 / 36

Methods for multi-loop computations

In short...:

I Every multi-loop amplitude can be reduced to scalar integrals

I The scalar integrals can be organised into topologies

How many integrals are we talking about?

22 / 36

Methods for multi-loop computations

In short...:

I Every multi-loop amplitude can be reduced to scalar integrals

I The scalar integrals can be organised into topologies

How many integrals are we talking about?

22 / 36

Methods for multi-loop computations

Let us go back to qq̄ → ZZ → at 2 loops:

I We’ve showed the amplitude can be reduced to scalar coefficients

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµνi (pj)

)
u(p1) ,

I The Ci (p1, ..., p4) are written as combination of scalar integrals:

I(pj) =

∫ 2∏
i=1

Ddki
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

,

I We can then organise them into 3 topologies
(two planars and one non-planar)

I Remove all reducible scalar products

→ we are left with around 4000 apparently different scalar integrals

23 / 36

Methods for multi-loop computations

Let us go back to qq̄ → ZZ → at 2 loops:

I We’ve showed the amplitude can be reduced to scalar coefficients

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµνi (pj)

)
u(p1) ,

I The Ci (p1, ..., p4) are written as combination of scalar integrals:

I(pj) =

∫ 2∏
i=1

Ddki
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

,

I We can then organise them into 3 topologies
(two planars and one non-planar)

I Remove all reducible scalar products

→ we are left with around 4000 apparently different scalar integrals

23 / 36

Methods for multi-loop computations

Let us go back to qq̄ → ZZ → at 2 loops:

I We’ve showed the amplitude can be reduced to scalar coefficients

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµνi (pj)

)
u(p1) ,

I The Ci (p1, ..., p4) are written as combination of scalar integrals:

I(pj) =

∫ 2∏
i=1

Ddki
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

,

I We can then organise them into 3 topologies
(two planars and one non-planar)

I Remove all reducible scalar products

→ we are left with around 4000 apparently different scalar integrals

23 / 36

Methods for multi-loop computations

Let us go back to qq̄ → ZZ → at 2 loops:

I We’ve showed the amplitude can be reduced to scalar coefficients

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµνi (pj)

)
u(p1) ,

I The Ci (p1, ..., p4) are written as combination of scalar integrals:

I(pj) =

∫ 2∏
i=1

Ddki
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

,

I We can then organise them into 3 topologies
(two planars and one non-planar)

I Remove all reducible scalar products

→ we are left with around 4000 apparently different scalar integrals

23 / 36

Methods for multi-loop computations

Let us go back to qq̄ → ZZ → at 2 loops:

I We’ve showed the amplitude can be reduced to scalar coefficients

F (l)
f (p1, ..., p4) = εµ3 (p3) εν4 (p4) ū(p2)

(
m∑
i=1

Ci (p1, ..., p4)Tµνi (pj)

)
u(p1) ,

I The Ci (p1, ..., p4) are written as combination of scalar integrals:

I(pj) =

∫ 2∏
i=1

Ddki
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

,

I We can then organise them into 3 topologies
(two planars and one non-planar)

I Remove all reducible scalar products

→ we are left with around 4000 apparently different scalar integrals

23 / 36

Methods for multi-loop computations

Luckly all these integrals are not independent! Many different identities can
be derived among integrals in the same topology.

I Integration-by-parts identities (IBPs)

I Lorentz-invariance identities (LIs)

I Symmetry relations (SR)

I (Schouten pseudo-identities) (SIs)

Large number of identities among integrals in the same topology (and its
sub-topologies).

→ Almost all integrals expressed in terms of Master Integrals (MIs).

24 / 36

Methods for multi-loop computations

Luckly all these integrals are not independent! Many different identities can
be derived among integrals in the same topology.

I Integration-by-parts identities (IBPs)

I Lorentz-invariance identities (LIs)

I Symmetry relations (SR)

I (Schouten pseudo-identities) (SIs)

Large number of identities among integrals in the same topology (and its
sub-topologies).

→ Almost all integrals expressed in terms of Master Integrals (MIs).

24 / 36

Methods for multi-loop computations

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

I The most important class of identities.
Generalisation of Gauss’s theorem in d dimensions

I Any d-dimensional integral is convergent !

I Necessary condition for convergence: the integrand be zero on the boundary

∫ l∏
i=1

Ddki
∂

∂ kµj

(
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

)
= 0

I In order to deal only with scalar quantities

∫ l∏
i=1

Ddki
∂

∂ kµj

(
vµn

Sa1
1 ... Saσ

σ

Db1
1 ...Dbτ

τ

)
= 0 , vµn = {p1, ..., pN ; k1, ..., kl}

→ Differentiation produces integrals in the same (sub-)topology !

25 / 36

Methods for multi-loop computations

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

I The most important class of identities.
Generalisation of Gauss’s theorem in d dimensions

I Any d-dimensional integral is convergent !

I Necessary condition for convergence: the integrand be zero on the boundary

∫ l∏
i=1

Ddki
∂

∂ kµj

(
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

)
= 0

I In order to deal only with scalar quantities

∫ l∏
i=1

Ddki
∂

∂ kµj

(
vµn

Sa1
1 ... Saσ

σ

Db1
1 ...Dbτ

τ

)
= 0 , vµn = {p1, ..., pN ; k1, ..., kl}

→ Differentiation produces integrals in the same (sub-)topology !

25 / 36

Methods for multi-loop computations

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

I The most important class of identities.
Generalisation of Gauss’s theorem in d dimensions

I Any d-dimensional integral is convergent !

I Necessary condition for convergence: the integrand be zero on the boundary

∫ l∏
i=1

Ddki
∂

∂ kµj

(
Sa1

1 ... Saσ
σ

Db1
1 ...Dbτ

τ

)
= 0

I In order to deal only with scalar quantities

∫ l∏
i=1

Ddki
∂

∂ kµj

(
vµn

Sa1
1 ... Saσ

σ

Db1
1 ...Dbτ

τ

)
= 0 , vµn = {p1, ..., pN ; k1, ..., kl}

→ Differentiation produces integrals in the same (sub-)topology !

25 / 36

Methods for multi-loop computations

Example IBPs: The 1loop tadpole

I(n) =

∫
Ddk

(k2 + m2)n

0 =

∫
Ddk

(
∂

∂kµ
kµ

)
1

(k2 + m2)n
= (d − 2 n)I(n) + 2 nm2 I(n + 1)

Recursive relation for reduction to a single Master Integral

26 / 36

Methods for multi-loop computations

which gives for example:

I

(d − 2)I(1) + 2m2I(2) = 0 → I(2) = −
(d − 2)

2m2
I(1)

I

(d − 4)I(2) + 4m2I(3) = 0 → I(3) = +
(d − 2)(d − 4)

8m4
I(1)

I

(d − 6)I(3) + 6m2I(4) = 0 → I(4) = −
(d − 2)(d − 4)(d − 6)

48m6
I(1)

The topology of the Tadpole has the Master Integrals I(1).

27 / 36

Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

I Integrals are Lorentz scalars:

pµi → pµi + δpµi = pµi + ωµνp
ν
i , with ωµν = −ωνµ

I(pi + δpi) = I(pi) = I(pi) + ωµν
∑
j

pj,ν
∂

∂pµj
I(pi)

I which in turn gives

∑
j

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(pi) = 0 .

I This can be multiplied by any antisymmetric combination of pµi pνj to give

further scalar relations among the integrals I(pi)

28 / 36

Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

I Integrals are Lorentz scalars:

pµi → pµi + δpµi = pµi + ωµνp
ν
i , with ωµν = −ωνµ

I(pi + δpi) = I(pi) = I(pi) + ωµν
∑
j

pj,ν
∂

∂pµj
I(pi)

I which in turn gives

∑
j

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(pi) = 0 .

I This can be multiplied by any antisymmetric combination of pµi pνj to give

further scalar relations among the integrals I(pi)

28 / 36

Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

I Integrals are Lorentz scalars:

pµi → pµi + δpµi = pµi + ωµνp
ν
i , with ωµν = −ωνµ

I(pi + δpi) = I(pi) = I(pi) + ωµν
∑
j

pj,ν
∂

∂pµj
I(pi)

I which in turn gives

∑
j

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(pi) = 0 .

I This can be multiplied by any antisymmetric combination of pµi pνj to give

further scalar relations among the integrals I(pi)

28 / 36

Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

I Integrals are Lorentz scalars:

pµi → pµi + δpµi = pµi + ωµνp
ν
i , with ωµν = −ωνµ

I(pi + δpi) = I(pi) = I(pi) + ωµν
∑
j

pj,ν
∂

∂pµj
I(pi)

I which in turn gives

∑
j

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(pi) = 0 .

I This can be multiplied by any antisymmetric combination of pµi pνj to give

further scalar relations among the integrals I(pi)

28 / 36

Methods for multi-loop computations

Examples of LIs - 3-point functions

Depend on two momenta p1, p2, one LI :

(
pµ1 pν2 − pν1 pµ2

) 2∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2) = 0 .

Examples of LIs - 4-point functions

Depend on three momenta p1, p2 and p3:

(
pµ1 pν2 − pν1 pµ2

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 ,

(
pµ1 pν3 − pν1 pµ3

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 ,

(
pµ2 pν3 − pν2 pµ3

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 .

29 / 36

Methods for multi-loop computations

Examples of LIs - 3-point functions

Depend on two momenta p1, p2, one LI :

(
pµ1 pν2 − pν1 pµ2

) 2∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2) = 0 .

Examples of LIs - 4-point functions

Depend on three momenta p1, p2 and p3:

(
pµ1 pν2 − pν1 pµ2

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 ,

(
pµ1 pν3 − pν1 pµ3

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 ,

(
pµ2 pν3 − pν2 pµ3

) 3∑
j=1

(
pj,µ

∂

∂pνj
− pj,ν

∂

∂pµj

)
I(p1, p2, p3) = 0 .

29 / 36

Methods for multi-loop computations

Symmetry relations (SRs)

I Sometimes are needed to ensure complete reduction to a minimal set of MIs.

I Shift of loop-momenta with Jacobian = 1. Doesn’t change the integral but
transforms the integrand into a linear combination of new integrands

I Can map different topologies (showing that some topologies are not
independent and must not be reduced)

I Can also map integrals in the same topology → Sector Symmetries !

→ These identities could reduce the number of independent MIs !

30 / 36

Methods for multi-loop computations

Symmetry relations (SRs)

I Sometimes are needed to ensure complete reduction to a minimal set of MIs.

I Shift of loop-momenta with Jacobian = 1. Doesn’t change the integral but
transforms the integrand into a linear combination of new integrands

I Can map different topologies (showing that some topologies are not
independent and must not be reduced)

I Can also map integrals in the same topology → Sector Symmetries !

→ These identities could reduce the number of independent MIs !

30 / 36

Methods for multi-loop computations

Symmetry relations (SRs)

I Sometimes are needed to ensure complete reduction to a minimal set of MIs.

I Shift of loop-momenta with Jacobian = 1. Doesn’t change the integral but
transforms the integrand into a linear combination of new integrands

I Can map different topologies (showing that some topologies are not
independent and must not be reduced)

I Can also map integrals in the same topology → Sector Symmetries !

→ These identities could reduce the number of independent MIs !

30 / 36

Methods for multi-loop computations

(Trivial) example on SRs: Two-loop massive sunrise with equal masses

I(n1, n2, n3; n4, n5) =

∫
DdkDd l

(k · p)n4 (l · p)n5

(k2 + m2)n1 (l2 + m2)n2 ((k − l − p)2 + m2)n3

=

∫
DdkDd l

(k · p)n4 (l · p)n5

Dn1
1 Dn2

2 Dn3
3

Using only IBPs and LIs we get 4 MIs:

M1 =

∫
DdkDd l

D1 D2 D3
, M2 =

∫
DdkDd l

D2
1 D2 D3

, M3 =

∫
DdkDd l

D1 D2
2 D3

, M4 =

∫
DdkDd l

D1 D2 D2
3

But we (obviously!) have that:

M2 = M3 = M4 → only two MIs survive!

31 / 36

Methods for multi-loop computations

(Trivial) example on SRs: Two-loop massive sunrise with equal masses

I(n1, n2, n3; n4, n5) =

∫
DdkDd l

(k · p)n4 (l · p)n5

(k2 + m2)n1 (l2 + m2)n2 ((k − l − p)2 + m2)n3

=

∫
DdkDd l

(k · p)n4 (l · p)n5

Dn1
1 Dn2

2 Dn3
3

Using only IBPs and LIs we get 4 MIs:

M1 =

∫
DdkDd l

D1 D2 D3
, M2 =

∫
DdkDd l

D2
1 D2 D3

, M3 =

∫
DdkDd l

D1 D2
2 D3

, M4 =

∫
DdkDd l

D1 D2 D2
3

But we (obviously!) have that:

M2 = M3 = M4 → only two MIs survive!

31 / 36

Methods for multi-loop computations

(Trivial) example on SRs: Two-loop massive sunrise with equal masses

I(n1, n2, n3; n4, n5) =

∫
DdkDd l

(k · p)n4 (l · p)n5

(k2 + m2)n1 (l2 + m2)n2 ((k − l − p)2 + m2)n3

=

∫
DdkDd l

(k · p)n4 (l · p)n5

Dn1
1 Dn2

2 Dn3
3

Using only IBPs and LIs we get 4 MIs:

M1 =

∫
DdkDd l

D1 D2 D3
, M2 =

∫
DdkDd l

D2
1 D2 D3

, M3 =

∫
DdkDd l

D1 D2
2 D3

, M4 =

∫
DdkDd l

D1 D2 D2
3

But we (obviously!) have that:

M2 = M3 = M4 → only two MIs survive!

31 / 36

Methods for multi-loop computations

Laporta Algorithm

32 / 36

Methods for multi-loop computations

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers nj of the
denominators

2. Laporta realised that increasing number of scalar products and powers of
denominators the system of IBPs becomes apparently overconstraint.

3. → Large redoundancy!
With ordering the equations can be inverted one after the other!

4. The system turns out to be (often) underconstraint!
→ All integrals are expressed in function of Master Integrals (MIs).

33 / 36

Methods for multi-loop computations

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers nj of the
denominators

2. Laporta realised that increasing number of scalar products and powers of
denominators the system of IBPs becomes apparently overconstraint.

3. → Large redoundancy!
With ordering the equations can be inverted one after the other!

4. The system turns out to be (often) underconstraint!
→ All integrals are expressed in function of Master Integrals (MIs).

33 / 36

Methods for multi-loop computations

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers nj of the
denominators

2. Laporta realised that increasing number of scalar products and powers of
denominators the system of IBPs becomes apparently overconstraint.

3. → Large redoundancy!
With ordering the equations can be inverted one after the other!

4. The system turns out to be (often) underconstraint!
→ All integrals are expressed in function of Master Integrals (MIs).

33 / 36

Methods for multi-loop computations

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers nj of the
denominators

2. Laporta realised that increasing number of scalar products and powers of
denominators the system of IBPs becomes apparently overconstraint.

3. → Large redoundancy!
With ordering the equations can be inverted one after the other!

4. The system turns out to be (often) underconstraint!
→ All integrals are expressed in function of Master Integrals (MIs).

33 / 36

Methods for multi-loop computations

I Laporta Algorithm must be implemented in a computer program

I Realistic cases systems of ≈ 100000 / 1000000 equations

I Again qq̄ → ZZ :

1. After tensor reduction ≈ 4000 scalar integrals.

2. After solving IBPs + LIs + SRs → ≈ 50 MIs.

I Problem remains: How to solve the MIs ?

→ See Lecture 3

34 / 36

Methods for multi-loop computations

I Laporta Algorithm must be implemented in a computer program

I Realistic cases systems of ≈ 100000 / 1000000 equations

I Again qq̄ → ZZ :

1. After tensor reduction ≈ 4000 scalar integrals.

2. After solving IBPs + LIs + SRs → ≈ 50 MIs.

I Problem remains: How to solve the MIs ?

→ See Lecture 3

34 / 36

Methods for multi-loop computations

I Laporta Algorithm must be implemented in a computer program

I Realistic cases systems of ≈ 100000 / 1000000 equations

I Again qq̄ → ZZ :

1. After tensor reduction ≈ 4000 scalar integrals.

2. After solving IBPs + LIs + SRs → ≈ 50 MIs.

I Problem remains: How to solve the MIs ?

→ See Lecture 3

34 / 36

Methods for multi-loop computations

I Laporta’s Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus
4.

I Computation of 2 loop corrections to 4-point functions finally “feasible”

1. qq̄ → 2 partons
2. qq̄ → tt̄
3. qq̄ → V1 V2

4.

35 / 36

Methods for multi-loop computations

I Laporta’s Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus
4.

I Computation of 2 loop corrections to 4-point functions finally “feasible”

1. qq̄ → 2 partons
2. qq̄ → tt̄
3. qq̄ → V1 V2

4.

35 / 36

Methods for multi-loop computations

Bibliography:

1. High-precision calculation of multi-loop Feynman integrals by difference
equations, S.Laporta, [hep:ph/0102033]

2. Differential Equations for Two-Loop Four-Point Functions, T. Gehrmann, E.
Remiddi, [hep:ph/9912329]

3. Feynman diagrams and differential equations, M. Argeri, P. Mastrolia,
[arXiv:0707.4037]

4. Vertex diagrams for the QED form factors at the 2-loop level, B. Bonciani, P.
Mastrolia, E. Remiddi, [hep-ph/0301170]

5. Reduze 2 - Distributed Feynman Integral Reduction, A. von Manteuffel, C.
Studerus, [arXiv:1201.4330]

36 / 36

