Methods for multi-loop computations

Lorenzo Tancredi
Physik-Institut - Zurich University

Bhubaneswar, 4-9 March 2014

Lecture I

Reduction to Master Integrals

- Introduction:

1. Multi-loop amplitudes
2. Tensor Reduction \rightarrow scalar integrals

- Identities for reduction to MIs:

1. Integration-by-parts identities
2. Lorentz identities
3. Symmetry relations
4. Schouten identities

- The Laporta Algorithm

1. Reduze 2.

Introduction

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD Cross section for N-particle scattering process:

$$
\sigma_{N}=\sigma_{N}^{(0)}+\sigma_{N}^{(1)}\left(\frac{\alpha_{S}}{2 \pi}\right)+\sigma_{N}^{(2)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{2}+\ldots
$$

- NLO:

- NNLO:

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD Cross section for N-particle scattering process:

$$
\sigma_{N}=\sigma_{N}^{(0)}+\sigma_{N}^{(1)}\left(\frac{\alpha_{S}}{2 \pi}\right)+\sigma_{N}^{(2)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{2}+\ldots
$$

- LO:

$$
\sigma_{N}^{(0)} \approx \int\left|\mathcal{M}_{N}^{(0)}\right|^{2} d \Phi_{N}
$$

- NLO:

- NNLO:

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD Cross section for N-particle scattering process:

$$
\sigma_{N}=\sigma_{N}^{(0)}+\sigma_{N}^{(1)}\left(\frac{\alpha_{S}}{2 \pi}\right)+\sigma_{N}^{(2)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{2}+\ldots
$$

- LO:

$$
\sigma_{N}^{(0)} \approx \int\left|\mathcal{M}_{N}^{(0)}\right|^{2} d \Phi_{N}
$$

- NLO:

$$
\sigma_{N}^{(1)} \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(1)}\right) d \Phi_{N}+\int\left|\mathcal{M}_{N+1}^{(0)}\right|^{2} d \Phi_{N+1}
$$

- NNLO:

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD Cross section for N-particle scattering process:

$$
\sigma_{N}=\sigma_{N}^{(0)}+\sigma_{N}^{(1)}\left(\frac{\alpha_{S}}{2 \pi}\right)+\sigma_{N}^{(2)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{2}+\ldots
$$

- LO:

$$
\sigma_{N}^{(0)} \approx \int\left|\mathcal{M}_{N}^{(0)}\right|^{2} d \Phi_{N}
$$

- NLO:

$$
\sigma_{N}^{(1)} \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(1)}\right) d \Phi_{N}+\int\left|\mathcal{M}_{N+1}^{(0)}\right|^{2} d \Phi_{N+1}
$$

- NNLO:

$$
\begin{aligned}
\sigma_{n}^{(2)} & \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(2)}\right) d \Phi_{N}+\int 2 \operatorname{Re}\left(\mathcal{M}_{N+1}^{(0) *} \mathcal{M}_{N+1}^{(1)}\right) d \Phi_{N+1} \\
& +\int\left|\mathcal{M}_{N+2}^{(0)}\right|^{2} d \Phi_{N+2}
\end{aligned}
$$

Point is: To get to NNLO we miss $\mathcal{M}_{N}^{(2)} \ldots$

- For a QCD process with N external particles
all momenta p_{1}, \ldots, p_{N} are incoming
- Scattering amplitude is $\mathcal{M}_{N}=\mathcal{S}\left(p_{1}, \ldots, p_{N}\right)$
- How can we compute it up to two loops or more?

Point is: To get to NNLO we miss $\mathcal{M}_{N}^{(2)} \ldots$

- For a QCD process with N external particles all momenta p_{1}, \ldots, p_{N} are incoming
- Scattering amplitude is $\mathcal{M}_{N}=\mathcal{S}\left(p_{1}, \ldots, p_{N}\right)$
- How can we compute it up to two loops or more?

Point is: To get to NNLO we miss $\mathcal{M}_{N}^{(2)} \ldots$

- For a QCD process with N external particles all momenta p_{1}, \ldots, p_{N} are incoming
- Scattering amplitude is $\mathcal{M}_{N}=\mathcal{S}\left(p_{1}, \ldots, p_{N}\right)$
- How can we compute it up to two loops or more?

Point is: To get to NNLO we miss $\mathcal{M}_{N}^{(2)} \ldots$

- For a QCD process with N external particles all momenta p_{1}, \ldots, p_{N} are incoming
- Scattering amplitude is $\mathcal{M}_{N}=\mathcal{S}\left(p_{1}, \ldots, p_{N}\right)$
- How can we compute it up to two loops or more?
- In perturbative QCD:

$$
\begin{aligned}
\mathcal{S}\left(p_{1}, \ldots, p_{N}\right) & =\mathcal{S}^{(0)}\left(p_{1}, \ldots, p_{N}\right)+\left(\frac{\alpha_{S}}{2 \pi}\right) \mathcal{S}^{(1)}\left(p_{1}, \ldots, p_{N}\right) \\
& +\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \mathcal{S}^{(2)}\left(p_{1}, \ldots, p_{N}\right)+\ldots
\end{aligned}
$$

- Every term can be expanded in Feynman diagrams
\rightarrow Diagrammatic approach to multi-loop computations!
- In perturbative QCD:

$$
\begin{aligned}
\mathcal{S}\left(p_{1}, \ldots, p_{N}\right) & =\mathcal{S}^{(0)}\left(p_{1}, \ldots, p_{N}\right)+\left(\frac{\alpha_{S}}{2 \pi}\right) \mathcal{S}^{(1)}\left(p_{1}, \ldots, p_{N}\right) \\
& +\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \mathcal{S}^{(2)}\left(p_{1}, \ldots, p_{N}\right)+\ldots
\end{aligned}
$$

- Every term can be expanded in Feynman diagrams
\rightarrow Diagrammatic approach to multi-loop computations !

Example (in massless QCD): $\quad q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow Z\left(p_{3}\right)+Z\left(p_{4}\right)$
$-\mathcal{S}^{(0)}\left(p_{1}, \ldots, p_{4}\right) \approx 2$ tree-level diagrams

- $\mathcal{S}^{(1)}\left(p_{1}, \ldots, p_{4}\right) \approx 10$ one-loop diagrams
$\Rightarrow S^{(2)}\left(p_{1}, \ldots, p_{4}\right) \approx 143$ two-loop diagrams - $\mathcal{S}^{(3)}\left(p_{1}, \ldots, p_{4}\right) \approx 2922$ three-loop diagrams

There is no escape from combinatorics!
Things become very soon very nasty !

Example (in massless QCD): $\quad q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow Z\left(p_{3}\right)+Z\left(p_{4}\right)$

- $\mathcal{S}^{(0)}\left(p_{1}, \ldots, p_{4}\right) \approx 2$ tree-level diagrams
- $\mathcal{S}^{(1)}\left(p_{1}, \ldots, p_{4}\right) \approx \mathbf{1 0}$ one-loop diagrams
- $\mathcal{S}^{(2)}\left(p_{1}, \ldots, p_{4}\right) \approx 143$ two-loop diagrams
- $\mathcal{S}^{(3)}\left(p_{1}, \ldots, p_{4}\right) \approx 2922$ three-loop diagrams

There is no escape from combinatorics!
Things become very soon very nasty!
$q \bar{q} \rightarrow Z Z$ at /-loop, take sum of all Feynman Diagrams:

$$
\mathcal{S}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\sum_{f=1}^{M} \mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)
$$

where:

with:

- $u\left(p_{1}\right), \bar{u}\left(p_{2}\right)$ are the spinors of the incoming quarks.
- D_{j} are t different propagators.
- $T^{\mu \nu}\left(p_{i} ; k_{i}\right)$ is a rank two tensor built out of $\left\{p_{i}^{\mu}, k_{i}^{\mu}, \gamma_{i}^{\mu}, g^{\mu \nu}\right\}$
(This structure easily generalises to processes with more/different external legs)
$q \bar{q} \rightarrow Z Z$ at $/$-loop, take sum of all Feynman Diagrams:

$$
\mathcal{S}^{(\prime)}\left(p_{1}, \ldots, p_{4}\right)=\sum_{f=1}^{M} \mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)
$$

where:

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\int \prod_{j=1}^{l} \mathfrak{D}^{d} k_{j} \frac{T^{\mu \nu}\left(p_{i} ; k_{i}\right)}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}\right) u\left(p_{1}\right)
$$

with:

- $u\left(p_{1}\right), \bar{u}\left(p_{2}\right)$ are the spinors of the incoming quarks.
- D_{j} are t different propagators.
- $T^{\mu \nu}\left(p_{i} ; k_{i}\right)$ is a rank two tensor built out of $\left\{p_{i}^{\mu}, k_{i}^{\mu}, \gamma_{i}^{\mu}, g^{\mu \nu}\right\}$
$q \bar{q} \rightarrow Z Z$ at $/$-loop, take sum of all Feynman Diagrams:

$$
\mathcal{S}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\sum_{f=1}^{M} \mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)
$$

where:

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\int \prod_{j=1}^{l} \mathfrak{D}^{d} k_{j} \frac{T^{\mu \nu}\left(p_{i} ; k_{i}\right)}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}\right) u\left(p_{1}\right)
$$

with:

- $u\left(p_{1}\right), \bar{u}\left(p_{2}\right)$ are the spinors of the incoming quarks.
- D_{j} are t different propagators.
- $T^{\mu \nu}\left(p_{i} ; k_{i}\right)$ is a rank two tensor built out of $\left\{p_{i}^{\mu}, k_{i}^{\mu}, \gamma_{i}^{\mu}, g^{\mu \nu}\right\}$
(This structure easily generalises to processes with more/different external legs)

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta from the tensor $T^{\mu \nu}$:

so that

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta from the tensor $T^{\mu \nu}$:

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}
$$

so that

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta from the tensor $T^{\mu \nu}$:

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}=C\left(m^{2}\right) g^{\mu \nu}
$$

so that

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta from the tensor $T^{\mu \nu}$:

$$
\begin{gathered}
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}=C\left(m^{2}\right) g^{\mu \nu}, \\
g^{\mu \nu} \int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}=C\left(m^{2}\right) d \rightarrow \int \mathfrak{D}^{d} k\left(\frac{1}{k^{2}+m^{2}}-\frac{m^{2}}{\left(k^{2}+m^{2}\right)^{2}}\right)=C\left(m^{2}\right) d
\end{gathered}
$$

so that

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta from the tensor $T^{\mu \nu}$:

$$
\begin{gathered}
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}=C\left(m^{2}\right) g^{\mu \nu}, \\
g^{\mu \nu} \int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)^{2}}=C\left(m^{2}\right) d \rightarrow \int \mathfrak{D}^{d} k\left(\frac{1}{k^{2}+m^{2}}-\frac{m^{2}}{\left(k^{2}+m^{2}\right)^{2}}\right)=C\left(m^{2}\right) d
\end{gathered}
$$

so that

$$
C\left(m^{2}\right)=\frac{1}{d}\left(\int \mathfrak{D}^{d} k \frac{1}{k^{2}+m^{2}}-m^{2} \int \mathfrak{D}^{d} k \frac{1}{\left(k^{2}+m^{2}\right)^{2}}\right)
$$

Tensor Reduction 2:

More interesting example

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}=C_{1}\left(m^{2}, p^{2}\right) g^{\mu \nu}+C_{2}\left(m^{2}, p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}
$$

multiplying this equation once by $g^{\mu \nu}$, once by $p^{\mu} p^{\nu}$

$$
\int D^{d} k \frac{k^{2}}{D_{1} D_{2}}=d C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right)
$$

$$
\int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}=p^{2}\left[C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right)\right]
$$

and inverting for C_{1} and C_{2} we find:

Tensor Reduction 2:

More interesting example

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}=C_{1}\left(m^{2}, p^{2}\right) g^{\mu \nu}+C_{2}\left(m^{2}, p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}
$$

multiplying this equation once by $g^{\mu \nu}$, once by $p^{\mu} p^{\nu}$

$$
\int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}=p^{2}\left[C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right)\right]
$$

and inverting for C_{1} and C_{2} we find:

Tensor Reduction 2:

More interesting example

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}=C_{1}\left(m^{2}, p^{2}\right) g^{\mu \nu}+C_{2}\left(m^{2}, p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}
$$

multiplying this equation once by $g^{\mu \nu}$, once by $p^{\mu} p^{\nu}$

and inverting for C_{1} and C_{2} we find:

Tensor Reduction 2:

More interesting example

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}=C_{1}\left(m^{2}, p^{2}\right) g^{\mu \nu}+C_{2}\left(m^{2}, p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}
$$

multiplying this equation once by $g^{\mu \nu}$, once by $p^{\mu} p^{\nu}$

$$
\begin{gathered}
\int \mathfrak{D}^{d} k \frac{k^{2}}{D_{1} D_{2}}=d C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right) \\
\int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}=p^{2}\left[C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right)\right]
\end{gathered}
$$

and inverting for C_{1} and C_{2} we find:

Tensor Reduction 2:

More interesting example

$$
\int \mathfrak{D}^{d} k \frac{k^{\mu} k^{\nu}}{\left(k^{2}+m^{2}\right)\left((k-p)^{2}+m^{2}\right)}=C_{1}\left(m^{2}, p^{2}\right) g^{\mu \nu}+C_{2}\left(m^{2}, p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}
$$

multiplying this equation once by $g^{\mu \nu}$, once by $p^{\mu} p^{\nu}$

$$
\begin{gathered}
\int \mathfrak{D}^{d} k \frac{k^{2}}{D_{1} D_{2}}=d C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right) \\
\int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}=p^{2}\left[C_{1}\left(m^{2}, p^{2}\right)+C_{2}\left(m^{2}, p^{2}\right)\right]
\end{gathered}
$$

and inverting for C_{1} and C_{2} we find:

$$
\begin{aligned}
& C_{1}\left(m^{2}, p^{2}\right)=\frac{1}{(d-1)}\left(\int \mathfrak{D}^{d} k \frac{k^{2}}{D_{1} D_{2}}-\frac{1}{p^{2}} \int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}\right) \\
& C_{2}\left(m^{2}, p^{2}\right)=\frac{1}{(d-1)}\left(\frac{d}{p^{2}} \int \mathfrak{D}^{d} k \frac{(k \cdot p)^{2}}{D_{1} D_{2}}-\int \mathfrak{D}^{d} k \frac{k^{2}}{D_{1} D_{2}}\right)
\end{aligned}
$$

These results can be generalised to any number of loops ($q \bar{q} \rightarrow Z Z$ again):

$$
\mathcal{F}_{f}^{(l)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\int \prod_{j=1}^{\prime} \mathfrak{D}^{d} k_{j} \frac{T^{\mu \nu}\left(p_{i} ; k_{i}\right)}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}\right) u\left(p_{1}\right)
$$

becomes:

where now all dependence from loop momenta k_{j} is contained into the scalar coeffcients C_{i}

Tensorial structure is factored out from integrals!

We have to compute the $C_{i}\left(p_{1}, \ldots, p_{N}\right)$!

These results can be generalised to any number of loops ($q \bar{q} \rightarrow Z Z$ again):

$$
\mathcal{F}_{f}^{(l)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\int \prod_{j=1}^{\prime} \mathfrak{D}^{d} k_{j} \frac{T^{\mu \nu}\left(p_{i} ; k_{i}\right)}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}\right) u\left(p_{1}\right)
$$

becomes:

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

where now all dependence from loop momenta k_{j} is contained into the scalar coeffcients C_{i}.

Tensorial structure is factored out from integrals!

We have to compute the $C_{i}\left(p_{1}, \ldots, p_{N}\right)$!

These results can be generalised to any number of loops ($q \bar{q} \rightarrow Z Z$ again):

$$
\mathcal{F}_{f}^{(l)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\int \prod_{j=1}^{\prime} \mathfrak{D}^{d} k_{j} \frac{T^{\mu \nu}\left(p_{i} ; k_{i}\right)}{D_{1}^{b_{1}} \ldots D_{t}^{b_{t}}}\right) u\left(p_{1}\right)
$$

becomes:

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

where now all dependence from loop momenta k_{j} is contained into the scalar coeffcients C_{i}.

Tensorial structure is factored out from integrals!
We have to compute the $C_{i}\left(p_{1}, \ldots, p_{N}\right)$!

Through tensor reduction every coefficients is given by a linear combination of scalar integrals of the form

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{\prime} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\rho}^{a_{\rho}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

where:

$$
\rho \quad \text { scal. prod. } \quad S_{j}=q_{n} \cdot q_{m}, \quad \text { with } \quad q_{i}=p_{1}, \ldots, p_{N}, k_{1}, \ldots, k_{l},
$$

τ different (euclidean) propagators $D_{j}=\left(q_{j}^{2}+m_{j}^{2}\right)$,
and a_{j}, b_{j} are just integer powers.

Irreducible Scalar Products

Given N external momenta, I loop momenta

$$
\rho=I\left(N+\frac{l}{2}-\frac{1}{2}\right) \quad \text { scalar prod. with } 1 \text { loop momentum }
$$

Given the τ different propagators, if $\rho>\tau \longrightarrow \sigma=\rho-\tau$ irreducible scalar products

Irreducible Scalar Products

Given N external momenta, I loop momenta

$$
\rho=I\left(N+\frac{l}{2}-\frac{1}{2}\right) \quad \text { scalar prod. with } 1 \text { loop momentum }
$$

Given the τ different propagators, if $\rho>\tau \longrightarrow \sigma=\rho-\tau$ irreducible scalar products

The others can be expressed as linear combination of propagators!

For example integral seen before:

then:
and so finally:

$\longrightarrow k \cdot p$ is a reducible scalar product!

The others can be expressed as linear combination of propagators!

For example integral seen before:

$$
\int \mathfrak{D}^{d} k \frac{k \cdot p}{D_{1} D_{2}}, \quad \text { with } \quad D_{1}=k^{2}+m^{2}, \quad D_{2}=\left((k-p)^{2}+m^{2}\right)
$$

then:
and so finally:

[^0]The others can be expressed as linear combination of propagators!
For example integral seen before:

$$
\int \mathfrak{D}^{d} k \frac{k \cdot p}{D_{1} D_{2}}, \quad \text { with } \quad D_{1}=k^{2}+m^{2}, \quad D_{2}=\left((k-p)^{2}+m^{2}\right)
$$

then:

$$
k \cdot p=\frac{1}{2}\left[\left(k^{2}+m^{2}\right)-\left((k-p)^{2}+m^{2}\right)+p^{2}\right]=\frac{1}{2}\left[D_{1}-D_{2}+p^{2}\right]
$$

and so finally:

$\longrightarrow k \cdot p$ is a reducible scalar product!

The others can be expressed as linear combination of propagators!
For example integral seen before:

$$
\int \mathfrak{D}^{d} k \frac{k \cdot p}{D_{1} D_{2}}, \quad \text { with } \quad D_{1}=k^{2}+m^{2}, \quad D_{2}=\left((k-p)^{2}+m^{2}\right)
$$

then:

$$
k \cdot p=\frac{1}{2}\left[\left(k^{2}+m^{2}\right)-\left((k-p)^{2}+m^{2}\right)+p^{2}\right]=\frac{1}{2}\left[D_{1}-D_{2}+p^{2}\right]
$$

and so finally:

$$
\begin{aligned}
\int \mathfrak{D}^{d} k \frac{k \cdot p}{D_{1} D_{2}} & =\frac{1}{2}\left(\int \mathfrak{D}^{d} k \frac{1}{D_{1}}-\int \mathfrak{D}^{d} k \frac{1}{D_{2}}+p^{2} \int \mathfrak{D}^{d} k \frac{1}{D_{1} D_{2}}\right) \\
& =\frac{p^{2}}{2} \int \mathfrak{D}^{d} k \frac{1}{D_{1} D_{2}}
\end{aligned}
$$

$\longrightarrow k \cdot p$ is a reducible scalar product!

Note that:

- at $\mathbf{1}$ loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products $k \cdot k$ and $k \cdot p$
2. 3 legs: 3 denominators, and 3 scalar products $k \cdot k, k \cdot p_{1}, k \cdot p_{2}$
3. etc ...

- Starting from two loops this is not necessarily true anymore!

Note that:

- at $\mathbf{1}$ loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products $k \cdot k$ and $k \cdot p$
2. 3 legs: 3 denominators, and 3 scalar products $k \cdot k, k \cdot p_{1}, k \cdot p_{2}$
3. etc ...

- Starting from two loops this is not necessarily true anymore!

Example: massive two-loop Sunrise

3 Denominators:

$$
D_{1}=k^{2}+m_{1}^{2}, \quad D_{2}=l^{2}+m_{2}^{2}, \quad D_{3}=(k-l-p)^{2}+m_{3}^{2}
$$

5 Scal. products: $\quad S_{1}=k \cdot k, S_{2}=l \cdot l, S_{3}=k \cdot l, S_{4}=k \cdot p, S_{5}=I \cdot p$

2 scalar products are irreducible! $\rightarrow\left\{S_{4}=k \cdot p, S_{5}=1 \cdot p\right\}$
So the most general integral in two-loop sunrise graph is
$\mathcal{I}\left(n_{1}, n_{2}, n_{3} ; n_{4}, n_{5}\right)=\int \mathfrak{D}^{d} k \mathfrak{D}^{d} \prime \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}}$

Example: massive two-loop Sunrise

3 Denominators: $\quad D_{1}=k^{2}+m_{1}^{2}, \quad D_{2}=l^{2}+m_{2}^{2}, \quad D_{3}=(k-l-p)^{2}+m_{3}^{2}$
5 Scal. products: $\quad S_{1}=k \cdot k, S_{2}=1 \cdot 1, S_{3}=k \cdot 1, S_{4}=k \cdot p, S_{5}=1 \cdot p$

2 scalar products are irreducible! $\rightarrow \quad\left\{S_{4}=k \cdot p, S_{5}=I \cdot p\right\}$
So the most general integral in two-loop sunrise graph is

$$
\mathcal{I}\left(n_{1}, n_{2}, n_{3} ; n_{4}, n_{5}\right)=\int \mathfrak{D}^{d} k \mathfrak{D}^{d} ノ \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}} \quad \text { with } \quad n_{1}, n_{2}, n_{3}, n_{4}, n_{5} \geq 0
$$

Alternative approach \rightarrow integral families (see Reduze 2)

- Instead of irreducible scalar products we introduce auxiliary denominators
- For example, two-loop sunrise again. Instead of taking

$$
\left\{D_{1}, D_{2}, D_{3}, k \cdot p, l \cdot p\right\}
$$

- We can take two new denominators

$$
\left\{D_{1}, D_{2}, D_{3}, D_{4}=(k-p)^{2}, D_{5}=(I-p)^{2}\right\}
$$

- Integral Family for reduction of the two-loop massive sunrise becomes:

$$
\mathcal{I}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}} D_{4}^{n_{4}} D_{5}^{n_{5}}}, \quad n_{1}, n_{2}, n_{3} \geq 0, \quad n_{4}, n_{5} \in \mathbb{Z}
$$

- The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

- Integral Family for reduction of the two-loop massive sunrise becomes:

$$
\mathcal{I}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}} D_{4}^{n_{4}} D_{5}^{n_{5}}}, \quad n_{1}, n_{2}, n_{3} \geq 0, \quad n_{4}, n_{5} \in \mathbb{Z}
$$

- In this way all scalar products can be expressed as linear combinations of the 5 denominators !
- The two approaches are completely equivalent! We stick for now to irreducible scalar products.
- Integral Family for reduction of the two-loop massive sunrise becomes:

$$
\mathcal{I}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}} D_{4}^{n_{4}} D_{5}^{n_{5}}}, \quad n_{1}, n_{2}, n_{3} \geq 0, \quad n_{4}, n_{5} \in \mathbb{Z}
$$

- In this way all scalar products can be expressed as linear combinations of the 5 denominators !
- The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

- After removing all reducible scalar products we are left with:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{\prime} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

where $a_{j}, b_{j} \geq 0$.

- Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their powers and of any scalar products!

- Sub-topology tree is obtained removing one or more propagators in all possible ways.
- After removing all reducible scalar products we are left with:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{\prime} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

where $a_{j}, b_{j} \geq 0$.

- Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their powers and of any scalar products!

- Sub-topology tree is obtained removing one or more propagators in all possible ways.
- After removing all reducible scalar products we are left with:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{\prime} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

where $a_{j}, b_{j} \geq 0$.

- Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their powers and of any scalar products!

- Sub-topology tree is obtained removing one or more propagators in all possible ways.

Example: the sub-topology tree of the two-loop Sunrise is:

1. $\left\{D_{1}, D_{2}, D_{3}\right\} \rightarrow \int \mathcal{D}^{d} k \mathfrak{D}^{d} I \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}}$ with $n_{1}, n_{2}, n_{3}>0, \quad n_{4}, n_{5} \geq 0$
2. $\left\{D_{1}, D_{2}\right\} \rightarrow \int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}}}$ with $n_{1}, n_{2}>0, \quad n_{4}, n_{5} \geq 0$
3. $\left\{D_{1}, D_{3}\right\} \rightarrow \int \mathfrak{D}^{d} k \mathfrak{D}^{d} I \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{1}^{n_{1}} D_{3}^{n_{3}}}$ with $n_{1}, n_{3}>0, \quad n_{4}, n_{5} \geq 0$
4. $\left\{D_{2}, D_{3}\right\} \rightarrow \int \mathfrak{D}^{d} k \mathfrak{D}^{d} I \frac{S_{4}^{n_{4}} S_{5}^{n_{5}}}{D_{2}^{n_{2}} D_{3}^{n_{3}}}$ with $n_{2}, n_{3}>0, \quad n_{4}, n_{5} \geq 0$

In short...:

- Every multi-loop amplitude can be reduced to scalar integrals
- The scalar integrals can be organised into topologies

How many integrals are we talking about?

In short...:

- Every multi-loop amplitude can be reduced to scalar integrals
- The scalar integrals can be organised into topologies

How many integrals are we talking about?

Let us go back to $q \bar{q} \rightarrow Z Z \rightarrow$ at 2 loops:

- We've showed the amplitude can be reduced to scalar coefficients

$$
\mathcal{F}_{f}^{(\prime)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\mu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right),
$$

- The $C_{i}\left(p_{1}, \ldots, p_{4}\right)$ are written as combination of scalar integrals:

$$
I\left(p_{j}\right)=\int \prod_{i=1}^{2} D^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{T}^{b_{\tau}}}
$$

- We can then organise them into 3 topologies (two planars and one non-planar)
- Remove all reducible scalar products
\rightarrow we are left with around 4000 apparently different scalar integrals

Let us go back to $q \bar{q} \rightarrow Z Z \rightarrow$ at 2 loops:

- We've showed the amplitude can be reduced to scalar coefficients

$$
\mathcal{F}_{f}^{(\prime)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

- The $C_{i}\left(p_{1}, \ldots, p_{4}\right)$ are written as combination of scalar integrals:

- We can then organise them into 3 topologies (two planars and one non-planar)
- Remove all reducible scalar products

Let us go back to $q \bar{q} \rightarrow Z Z \rightarrow$ at 2 loops:

- We've showed the amplitude can be reduced to scalar coefficients

$$
\mathcal{F}_{f}^{(\prime)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

- The $C_{i}\left(p_{1}, \ldots, p_{4}\right)$ are written as combination of scalar integrals:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{2} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}},
$$

- We can then organise them into 3 topologies (two planars and one non-planar)
- Remove all reducible scalar products

Let us go back to $q \bar{q} \rightarrow Z Z \rightarrow$ at 2 loops:

- We've showed the amplitude can be reduced to scalar coefficients

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

- The $C_{i}\left(p_{1}, \ldots, p_{4}\right)$ are written as combination of scalar integrals:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{2} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

- We can then organise them into 3 topologies (two planars and one non-planar)
- Remove all reducible scalar products

Let us go back to $q \bar{q} \rightarrow Z Z \rightarrow$ at 2 loops:

- We've showed the amplitude can be reduced to scalar coefficients

$$
\mathcal{F}_{f}^{(I)}\left(p_{1}, \ldots, p_{4}\right)=\epsilon_{3}^{\mu}\left(p_{3}\right) \epsilon_{4}^{\nu}\left(p_{4}\right) \bar{u}\left(p_{2}\right)\left(\sum_{i=1}^{m} C_{i}\left(p_{1}, \ldots, p_{4}\right) T_{i}^{\mu \nu}\left(p_{j}\right)\right) u\left(p_{1}\right)
$$

- The $C_{i}\left(p_{1}, \ldots, p_{4}\right)$ are written as combination of scalar integrals:

$$
\mathcal{I}\left(p_{j}\right)=\int \prod_{i=1}^{2} \mathfrak{D}^{d} k_{i} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}
$$

- We can then organise them into 3 topologies (two planars and one non-planar)
- Remove all reducible scalar products
\rightarrow we are left with around 4000 apparently different scalar integrals

Luckly all these integrals are not independent! Many different identities can be derived among integrals in the same topology.

- Integration-by-parts identities (IBPs)
- Lorentz-invariance identities (LIs)
- Symmetry relations (SR)
- (Schouten pseudo-identities) (SIs)

Large number of identities among integrals in the same topology (and its sub-topologies).
\rightarrow Almost all integrals expressed in terms of Master Integrals (MIs)

Luckly all these integrals are not independent! Many different identities can be derived among integrals in the same topology.

- Integration-by-parts identities (IBPs)
- Lorentz-invariance identities (LIs)
- Symmetry relations (SR)
- (Schouten pseudo-identities) (SIs)

Large number of identities among integrals in the same topology (and its sub-topologies).
\rightarrow Almost all integrals expressed in terms of Master Integrals (MIs).

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

- The most important class of identities.

Generalisation of Gauss's theorem in d dimensions

- Any d-dimensional integral is convergent !
- Necessary condition for convergence: the integrand be zero on the boundary

- In order to deal only with scalar quantities

\rightarrow Differentiation produces integrals in the same (sub-)topology!

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

- The most important class of identities.

Generalisation of Gauss's theorem in d dimensions

- Any d-dimensional integral is convergent !
- Necessary condition for convergence: the integrand be zero on the boundary

$$
\int \prod_{i=1}^{l} \mathfrak{D}^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(\frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}\right)=0
$$

- In order to deal only with scalar quantities

\rightarrow Differentiation produces integrals in the same (sub-)topology!

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

- The most important class of identities.

Generalisation of Gauss's theorem in d dimensions

- Any d-dimensional integral is convergent !
- Necessary condition for convergence: the integrand be zero on the boundary

$$
\int \prod_{i=1}^{l} \mathfrak{D}^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(\frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}\right)=0
$$

- In order to deal only with scalar quantities

$$
\int \prod_{i=1}^{l} \mathfrak{D}^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(v_{n}^{\mu} \frac{S_{1}^{a_{1}} \ldots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \ldots D_{\tau}^{b_{\tau}}}\right)=0, \quad v_{n}^{\mu}=\left\{p_{1}, \ldots, p_{N} ; k_{1}, \ldots, k_{l}\right\}
$$

\rightarrow Differentiation produces integrals in the same (sub-)topology!

Example IBPs: The 1loop tadpole

$$
\begin{gathered}
\mathcal{I}(n)=\int \frac{\mathfrak{D}^{d} k}{\left(k^{2}+m^{2}\right)^{n}} \\
0=\int \mathfrak{D}^{d} k\left(\frac{\partial}{\partial k_{\mu}} k_{\mu}\right) \frac{1}{\left(k^{2}+m^{2}\right)^{n}}=(d-2 n) \mathcal{I}(n)+2 n m^{2} \mathcal{I}(n+1)
\end{gathered}
$$

Recursive relation for reduction to a single Master Integral
which gives for example:

$$
\begin{gathered}
(d-2) \mathcal{I}(1)+2 m^{2} \mathcal{I}(2)=0 \quad \rightarrow \quad \mathcal{I}(2)=-\frac{(d-2)}{2 m^{2}} \mathcal{I}(1) \\
(d-4) \mathcal{I}(2)+4 m^{2} \mathcal{I}(3)=0 \quad \rightarrow \quad \mathcal{I}(3)=+\frac{(d-2)(d-4)}{8 m^{4}} \mathcal{I}(1) \\
(d-6) \mathcal{I}(3)+6 m^{2} \mathcal{I}(4)=0 \quad \rightarrow \quad \mathcal{I}(4)=-\frac{(d-2)(d-4)(d-6)}{48 m^{6}} \mathcal{I}(1)
\end{gathered}
$$

The topology of the Tadpole has the Master Integrals $\mathcal{I}(1)$.

Lorentz invariance identities (Lls) [Gehrmann, Remiddi]

- Integrals are Lorentz scalars:

$$
p_{i}^{\mu} \rightarrow p_{i}^{\mu}+\delta p_{i}^{\mu}=p_{i}^{\mu}+\omega_{\mu \nu} p_{i}^{\nu}, \quad \text { with } \quad \omega_{\mu \nu}=-\omega_{\nu \mu}
$$

$$
\mathcal{I}\left(p_{i}+\delta p_{i}\right)=\mathcal{I}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)+\omega^{\mu \nu} \sum_{j} p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}} \mathcal{I}\left(p_{i}\right)
$$

- which in turn gives

$$
\sum_{j}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{i}\right)=0
$$

- This can be multiplied by any antisymmetric combination of $p_{i}^{\mu} p_{j}^{\nu}$ to give further scalar relations among the integrals $\mathcal{I}\left(p_{i}\right)$

Lorentz invariance identities (Lls) [Gehrmann, Remiddi]

- Integrals are Lorentz scalars:

$$
\begin{array}{r}
p_{i}^{\mu} \rightarrow p_{i}^{\mu}+\delta p_{i}^{\mu}=p_{i}^{\mu}+\omega_{\mu \nu} p_{i}^{\nu}, \quad \text { with } \quad \omega_{\mu \nu}=-\omega_{\nu \mu} \\
\mathcal{I}\left(p_{i}+\delta p_{i}\right)=\mathcal{I}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)+\omega^{\mu \nu} \sum_{j} p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}} \mathcal{I}\left(p_{i}\right)
\end{array}
$$

- which in turn gives

$$
\sum_{j}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{i}\right)=0
$$

- This can be multiplied by any antisymmetric combination of $p_{i}^{\mu} p_{j}^{\nu}$ to give further scalar relations among the integrals $\mathcal{I}\left(p_{i}\right)$

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

- Integrals are Lorentz scalars:

$$
\begin{aligned}
p_{i}^{\mu} \rightarrow p_{i}^{\mu}+\delta p_{i}^{\mu} & =p_{i}^{\mu}+\omega_{\mu \nu} p_{i}^{\nu}, \quad \text { with } \quad \omega_{\mu \nu}=-\omega_{\nu \mu} \\
\mathcal{I}\left(p_{i}+\delta p_{i}\right) & =\mathcal{I}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)+\omega^{\mu \nu} \sum_{j} p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}} \mathcal{I}\left(p_{i}\right)
\end{aligned}
$$

- which in turn gives

\rightarrow This can be multiplied by any antisymmetric combination of $p_{i}^{\mu} p_{j}^{\nu}$ to give further scalar relations among the integrals $\mathcal{I}\left(p_{i}\right)$

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

- Integrals are Lorentz scalars:

$$
\begin{aligned}
p_{i}^{\mu} \rightarrow p_{i}^{\mu}+\delta p_{i}^{\mu} & =p_{i}^{\mu}+\omega_{\mu \nu} p_{i}^{\nu}, \quad \text { with } \quad \omega_{\mu \nu}=-\omega_{\nu \mu} \\
\mathcal{I}\left(p_{i}+\delta p_{i}\right) & =\mathcal{I}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)+\omega^{\mu \nu} \sum_{j} p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}} \mathcal{I}\left(p_{i}\right)
\end{aligned}
$$

- which in turn gives

$$
\sum_{j}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{i}\right)=0
$$

- This can be multiplied by any antisymmetric combination of $p_{i}^{\mu} p_{j}^{\nu}$ to give further scalar relations among the integrals $\mathcal{I}\left(p_{i}\right)$

Examples of Lls - 3-point functions

Depend on two momenta p_{1}, p_{2}, one $L I$:

$$
\left(p_{1}^{\mu} p_{2}^{\nu}-p_{1}^{\nu} p_{2}^{\mu}\right) \sum_{j=1}^{2}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{1}, p_{2}\right)=0
$$

Examples of Lls - 4-point functions

Depend on three momenta p_{1}, p_{2} and p_{3} :

Examples of Lls - 3-point functions

Depend on two momenta p_{1}, p_{2}, one $L I$:

$$
\left(p_{1}^{\mu} p_{2}^{\nu}-p_{1}^{\nu} p_{2}^{\mu}\right) \sum_{j=1}^{2}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{1}, p_{2}\right)=0
$$

Examples of Lls - 4-point functions

Depend on three momenta p_{1}, p_{2} and p_{3} :

$$
\begin{aligned}
& \left(p_{1}^{\mu} p_{2}^{\nu}-p_{1}^{\nu} p_{2}^{\mu}\right) \sum_{j=1}^{3}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{1}, p_{2}, p_{3}\right)=0 \\
& \left(p_{1}^{\mu} p_{3}^{\nu}-p_{1}^{\nu} p_{3}^{\mu}\right) \sum_{j=1}^{3}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{1}, p_{2}, p_{3}\right)=0 \\
& \left(p_{2}^{\mu} p_{3}^{\nu}-p_{2}^{\nu} p_{3}^{\mu}\right) \sum_{j=1}^{3}\left(p_{j, \mu} \frac{\partial}{\partial p_{j}^{\nu}}-p_{j, \nu} \frac{\partial}{\partial p_{j}^{\mu}}\right) \mathcal{I}\left(p_{1}, p_{2}, p_{3}\right)=0
\end{aligned}
$$

Symmetry relations (SRs)

- Sometimes are needed to ensure complete reduction to a minimal set of MIs.
- Shift of loop-momenta with Jacobian $=1$. Doesn't change the integral but transforms the integrand into a linear combination of new integrands
- Can map different topologies (showing that some topologies are not independent and must not be reduced)
- Can also map integrals in the same topology \rightarrow Sector Symmetries ! \rightarrow These identities could reduce the number of independent MIs !

Symmetry relations (SRs)

- Sometimes are needed to ensure complete reduction to a minimal set of MIs.
- Shift of loop-momenta with Jacobian $=1$. Doesn't change the integral but transforms the integrand into a linear combination of new integrands
- Can map different topologies (showing that some topologies are not independent and must not be reduced)
- Can also map integrals in the same topology \rightarrow Sector Symmetries ! \rightarrow These identities could reduce the number of independent MIs !

Symmetry relations (SRs)

- Sometimes are needed to ensure complete reduction to a minimal set of MIs.
- Shift of loop-momenta with Jacobian =1. Doesn't change the integral but transforms the integrand into a linear combination of new integrands
- Can map different topologies (showing that some topologies are not independent and must not be reduced)
- Can also map integrals in the same topology \rightarrow Sector Symmetries !
\rightarrow These identities could reduce the number of independent MIs!
(Trivial) example on SRs: Two-loop massive sunrise with equal masses

$$
\begin{aligned}
\mathcal{I}\left(n_{1}, n_{2}, n_{3} ; n_{4}, n_{5}\right) & =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} I \frac{(k \cdot p)^{n_{4}}(l \cdot p)^{n_{5}}}{\left(k^{2}+m^{2}\right)^{n_{1}}\left(l^{2}+m^{2}\right)^{n_{2}}\left((k-l-p)^{2}+m^{2}\right)^{n_{3}}} \\
& =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} I \frac{(k \cdot p)^{n_{4}}(I \cdot p)^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}}
\end{aligned}
$$

Using only IBPs and LIs we get 4 MIs:

But we (obviously!) have that:
(Trivial) example on SRs: Two-loop massive sunrise with equal masses

$$
\begin{aligned}
\mathcal{I}\left(n_{1}, n_{2}, n_{3} ; n_{4}, n_{5}\right) & =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{(k \cdot p)^{n_{4}}(l \cdot p)^{n_{5}}}{\left(k^{2}+m^{2}\right)^{n_{1}}\left(l^{2}+m^{2}\right)^{n_{2}}\left((k-l-p)^{2}+m^{2}\right)^{n_{3}}} \\
& =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{(k \cdot p)^{n_{4}}(l \cdot p)^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}}
\end{aligned}
$$

Using only IBPs and LIs we get 4 MIs:
$M_{1}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2} D_{3}}, \quad M_{2}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{2} D_{2} D_{3}}, \quad M_{3}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2}^{2} D_{3}}, \quad M_{4}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2} D_{3}^{2}}$
(Trivial) example on SRs: Two-loop massive sunrise with equal masses

$$
\begin{aligned}
\mathcal{I}\left(n_{1}, n_{2}, n_{3} ; n_{4}, n_{5}\right) & =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{(k \cdot p)^{n_{4}}(l \cdot p)^{n_{5}}}{\left(k^{2}+m^{2}\right)^{n_{1}}\left(l^{2}+m^{2}\right)^{n_{2}}\left((k-l-p)^{2}+m^{2}\right)^{n_{3}}} \\
& =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{(k \cdot p)^{n_{4}}(l \cdot p)^{n_{5}}}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}}}
\end{aligned}
$$

Using only IBPs and LIs we get 4 MIs:
$M_{1}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2} D_{3}}, \quad M_{2}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1}^{2} D_{2} D_{3}}, \quad M_{3}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2}^{2} D_{3}}, \quad M_{4}=\int \frac{\mathfrak{D}^{d} k \mathfrak{D}^{d} l}{D_{1} D_{2} D_{3}^{2}}$

But we (obviously!) have that:

$$
M_{2}=M_{3}=M_{4} \quad \rightarrow \quad \text { only two MIs survive! }
$$

Laporta Algorithm

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers n_{j} of the denominators
[^1]
Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers n_{j} of the denominators
2. Laporta realised that increasing number of scalar products and powers of denominators the system of IBPs becomes apparently overconstraint.
3. \rightarrow Large redoundancy! With ordering the equations can be inverted one after the other!
4. The system turns out to be (often) underconstraint! \rightarrow All integrals are expressed in function of Master Integrals (MIs).

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers n_{j} of the denominators
2. Laporta realised that increasing number of scalar products and powers of denominators the system of IBPs becomes apparently overconstraint.
3. \rightarrow Large redoundancy! With ordering the equations can be inverted one after the other!
4. The system turns out to be (often) underconstraint! \rightarrow All integrals are expressed in function of Master Integrals (Mls)

Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers n_{j} of the denominators
2. Laporta realised that increasing number of scalar products and powers of denominators the system of IBPs becomes apparently overconstraint.
3. \rightarrow Large redoundancy!

With ordering the equations can be inverted one after the other!
4. The system turns out to be (often) underconstraint!
\rightarrow All integrals are expressed in function of Master Integrals (MIs).

- Laporta Algorithm must be implemented in a computer program
- Realistic cases systems of ≈ 100000 / 1000000 equations
- Again $q \bar{q} \rightarrow Z Z$:

1. After tensor reduction ≈ 4000 scalar integrals.
2. After solving IBPs $+\mathrm{Lls}+\mathrm{SRs} \rightarrow \approx 50 \mathrm{MIs}$.

- Problem remains: How to solve the MIs ?
\rightarrow See Lecture 3
- Laporta Algorithm must be implemented in a computer program
- Realistic cases systems of $\approx \mathbf{1 0 0 0 0 0} / \mathbf{1 0 0 0 0 0 0}$ equations
- Again $q \bar{q} \rightarrow Z Z$:

1. After tensor reduction ≈ 4000 scalar integrals.
2. After solving IBPs $+\mathrm{Lls}+\mathrm{SRs} \rightarrow \approx 50 \mathrm{Mls}$.

- Problem remains: How to solve the MIs ?
\rightarrow See Lecture 3
- Laporta Algorithm must be implemented in a computer program
- Realistic cases systems of $\approx \mathbf{1 0 0 0 0 0} / \mathbf{1 0 0 0 0 0 0}$ equations
- Again $q \bar{q} \rightarrow Z Z$:

1. After tensor reduction ≈ 4000 scalar integrals.
2. After solving IBPs $+\mathrm{Lls}+\mathrm{SRs} \rightarrow \approx 50 \mathrm{Mls}$.

- Problem remains: How to solve the MIs ?
\rightarrow See Lecture 3
- Laporta's Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus
4.

- Computation of 2 loop corrections to 4-point functions finally "feasible"

1. $a \bar{a} \rightarrow 2$ partons
2. $q \bar{q} \rightarrow t \bar{t}$
3. $q \bar{q} \rightarrow V_{1} V_{2}$

- Laporta's Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus
4.

- Computation of 2 loop corrections to 4-point functions finally "feasible"

1. $q \bar{q} \rightarrow 2$ partons
2. $q \bar{q} \rightarrow t \bar{t}$
3. $q \bar{q} \rightarrow V_{1} V_{2}$
4.

Bibliography:

1. High-precision calculation of multi-loop Feynman integrals by difference equations, S.Laporta, [hep:ph/0102033]
2. Differential Equations for Two-Loop Four-Point Functions, T. Gehrmann, E. Remiddi, [hep:ph/9912329]
3. Feynman diagrams and differential equations, M. Argeri, P. Mastrolia, [arXiv:0707.4037]
4. Vertex diagrams for the QED form factors at the 2-loop level, B. Bonciani, P. Mastrolia, E. Remiddi, [hep-ph/0301170]
5. Reduze 2 - Distributed Feynman Integral Reduction, A. von Manteuffel, C. Studerus, [arXiv:1201.4330]

[^0]: $\longrightarrow k \cdot p$ is a reducible scalar product!

[^1]: 2. Laporta realised that increasing number of scalar products and powers of denominators the system of IBPs becomes apparently overconstraint.
 3. \rightarrow Large redoundancy!

 With ordering the equations can be inverted one after the other!
 4. The system turns out to be (often) underconstraint! \rightarrow All integrals are expressed in function of Master Integrals (MIs).

