General Relativity

Institute of Physics Bhubaneshwar Homework 4

Textbook: Sean Carroll's Spacetime and Geometry

Remember each homework carries weight.
Late submissions will not be accepted.

1. Starting with the action

$$
\begin{equation*}
I=\frac{1}{2} \int_{\gamma} g_{\mu \nu}(x) \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} d \tau \tag{0.1}
\end{equation*}
$$

along the path γ, and considering infinitesimal variations of the path (keeping end points fixed)

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\mu}+\delta x^{\mu} \tag{0.2}
\end{equation*}
$$

show that the class of curves extremising the action I are geodesics.
2. Chapter 3 , exercise 8 .
3. Chapter 3, exercise 12.
4. Read section 3.10 and arrive at the geodesic deviation equation (3.208). Show your calculations.

