General Relativity

Institute of Physics Bhubaneshwar

Final Exam

Textbook: Sean Carroll's Spacetime and Geometry

1. $\{10$ marks $\}$ Stereographic coordinates once again: Consider the stereographic projection of the two sphere on the plane of the equator. Schematic diagram is shown in the figure 1.

Figure 1: Stereographic projection of the equator.

There are two patches: (i) M_{1} : sphere with the south pole deleted, (ii) M_{2} : sphere with the north pole deleted. These projections map a point on the sphere (θ, ϕ) to points (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ respectively on the plane. Show that these maps are given by

$$
\begin{align*}
& \phi_{1}: X+i Y=e^{i \phi} \tan \frac{\theta}{2} \tag{0.1}\\
& \phi_{2}: X^{\prime}+i Y^{\prime}=e^{i \phi} \cot \frac{\theta}{2} \tag{0.2}
\end{align*}
$$

Show that on the overlap

$$
\begin{equation*}
\phi_{2} \circ \phi_{1}^{-1}(X, Y)=X^{\prime}+i Y^{\prime}=\frac{1}{X-i Y} \tag{0.3}
\end{equation*}
$$

2. $\{10$ marks $\}$ Show that for an arbitrary vector field V^{μ}, the Jacobi identity holds

$$
\begin{equation*}
\left(\left[\left[\nabla_{\lambda}, \nabla_{\rho}\right], \nabla_{\sigma}\right]+\left[\left[\nabla_{\rho}, \nabla_{\sigma}\right], \nabla_{\lambda}\right]+\left[\left[\nabla_{\sigma}, \nabla_{\lambda}\right], \nabla_{\rho}\right]\right) V^{\mu}=0 \tag{0.4}
\end{equation*}
$$

3. \{10 marks $\}$ Show that the directional derivative of the Ricci scalar along a Killing vector field vanishes

$$
\begin{equation*}
K^{\lambda} \nabla_{\lambda} R=0 \tag{0.5}
\end{equation*}
$$

[HINT: Prove equation (3.176) first. Then (3.177). Then (3.178). This was one of the homework problems.]
4. $\{10$ marks $\}$ If a vector field is of the form

$$
\begin{equation*}
\xi^{\mu}=g \nabla^{\mu} f \tag{0.6}
\end{equation*}
$$

where f and g and scalar functions, then show that

$$
\begin{equation*}
\xi_{[\mu} \nabla_{\nu} \xi_{\sigma]}=0 \tag{0.7}
\end{equation*}
$$

Also, show that in the differential form notation equation (0.7) can be written as

$$
\begin{equation*}
\xi \wedge d \xi=0 \tag{0.8}
\end{equation*}
$$

5. $\{15$ marks $\}$ Imagine we have two vectors V^{μ} and W^{ν}, both of which are annihilated by a one form ξ_{μ}, i.e., $\xi_{\mu} V^{\mu}=0$ and $\xi_{\mu} W^{\mu}=0$, and the one form ξ_{μ} obeys

$$
\begin{equation*}
\xi_{[\mu} \nabla_{\nu} \xi_{\sigma]}=0 \tag{0.9}
\end{equation*}
$$

Show that this implies

$$
\begin{equation*}
\nabla_{[\mu} \xi_{\nu]} V^{\mu} W^{\nu}=0 \tag{0.10}
\end{equation*}
$$

[HINT: Consider $\xi_{[\mu} \nabla_{\nu} \xi_{\sigma]} V^{\mu} W^{\nu}$.]
If moreover the the vector ξ^{μ} is unit normalised, ie, $\xi_{\mu} \xi^{\mu}=1$, show that it also follows that the tensor

$$
\begin{equation*}
K_{\mu \nu}=\nabla_{\mu} \xi_{\nu}-\xi_{\mu} \xi^{\sigma} \nabla_{\sigma} \xi_{\nu} \tag{0.11}
\end{equation*}
$$

is symmetric.
6. $\{15$ marks $\}$ Lie derivatives and infinitesimal diffeomorphisms: If you still haven't understood the relation between Lie derivatives and infinitesimal diffeomorphisms, this exam problem is your last chance. Consider a scalar function $f(x)$ and an infinitesimal diffeomorphisms

$$
\begin{equation*}
x^{\mu^{\prime}}=x^{\mu}-\epsilon \xi^{\mu}+\mathcal{O}\left(\epsilon^{2}\right) . \tag{0.12}
\end{equation*}
$$

Since it is a scalar function it means that $f^{\prime}\left(x^{\prime}\right)=f(x)$.
(a) Show that to the leading order in ϵ

$$
\begin{equation*}
\delta f(x):=f^{\prime}(x)-f(x)=\epsilon £_{\xi} f . \tag{0.13}
\end{equation*}
$$

(b) Next consider a vector field $A^{\mu}(x)$. Under the change of coordinates recall that the vector field transforms as

$$
\begin{equation*}
A^{\mu^{\prime}}\left(x^{\prime}\right)=\frac{\partial x^{\mu^{\prime}}}{\partial x^{\nu}} A^{\nu}(x) \tag{0.14}
\end{equation*}
$$

Use this to show that

$$
\begin{equation*}
\delta A^{\mu}(x):=A^{\mu^{\prime}}(x)-A^{\mu}(x)=\epsilon £_{\xi} A^{\mu}(x) . \tag{0.15}
\end{equation*}
$$

(c) Show a similar result by designing appropriate notation for a one-form field.
7. $\{30$ marks $\}$ Problem 5, Chapter 5. [HINT: For problem 5(b) use the correct version of equation (2.52).]

