Mechanism of Magneto-structural transformation in Mn based Antiperovskites

K. R. Priolkar Department of Physics, Goa University, Taleigao Plateau, Goa

Abstract

One class of materials that has attracted attention as candidates for ferroic cooling applications are the Mn based antiperovskite materials (ABX₃). Amongst these GaCMn₃ undergoes a cubic-cubic volume discontinuous first order transition from a ferromagnetic (FM) to an antiferromagnetic (AFM) ground state at 160K [1] accompanied by a large and table like magnetocaloric effect in relatively low fields [2] and a recyclable adiabatic temperature change of 3K [3]. On the other hand, isostructural SnCMn₃ exhibits a sharp first order change from a paramagnetic (PM) state to a complex AFM and FM state at 279K accompanied by a conventional magnetic entropy change and negligible transitional hysteresis [4,5]. The solid solutions of these two compounds, although structurally single phase show a clear magnetic phase separation leading to frustrated magnetic ground states [6-8]. Through a confluence of different techniques like x-ray, neutron diffraction and x-ray absorption fine structure (XAFS) spectroscopy we dissect the role of constituent atoms in the magneto-structural transition in these materials. It is shown that the local structural distortions introduced by the size and electronic configuration of A site atom plays an important role in the first order magneto-structural transition and associated magnetocaloric effect.

References:

- 1. T. Tohei, H. Wada, and T. Kanomata, J. Appl. Phys. 94, 1800 (2003)
- 2. E. T. Dias, K. R. Priolkar, A. K. Nigam J. Magn. Magn. Mater. 363 140 (2014)
- 3. O. Cakir and M. Acet, *Appl. Phys. Lett.* **100** 202404 (2012)
- 4. B. S. Wang, et al., EPL 85, 47004 (2009)
- 5. E. T. Dias, K. R. Priolkar et al., J. Phys. D: Appl. Phys. 48 295001 (2015)
- 6. E. T. Dias, K. R. Priolkar, and A. K. Nigam, J. Appl. Phys. 117, 123901 (2015)
- 7. O. Cakir, et al. J. Magn. Magn. Mater. 390 96 (2015)
- 8. E. T. Dias, K. R. Priolkar et al., Phys. Rev B (2016) communicated.