
UNIFICATION OF THE UNIVERSE

Jogesh Pati SLAC National Accelerator Laboratory Stanford University Unification of Forces... Modified on Jan 31-2013 : 2 of 5.

I. Introduction

Starting With Maxwell's Unification Of Electricity & Magnetism, the quest for unification of fundamental particles & Their forces has progressed remarkably well over the last four decades Through an interplay Between Theory & Experiments Proving BOTH into the World Of the VERY SMALL & OF The VERY LARGE 10 -> 10 cm A PREVIEW -> Chart 1

2(b) Three Families of Quarks and Leptons

QUARKS	Charge	Mass	LEPTONS	Mass
(u) up	+2/3	3 MeV	(v _e	< 2 ev
down	-1/3	6 MeV	e ⁻)	0.5 MeV
(c) charm	+2/3	1300 MeV	$\begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}$	< 2 ev
strange	-1/3	110 MeV		6 MeV
(t top bottom	+2/3 -1/3	170 GeV 4.4 GeV	$\begin{pmatrix} v_{\tau} \\ \tau^{-} \end{pmatrix}$	< 2 ev 1.8 GeV

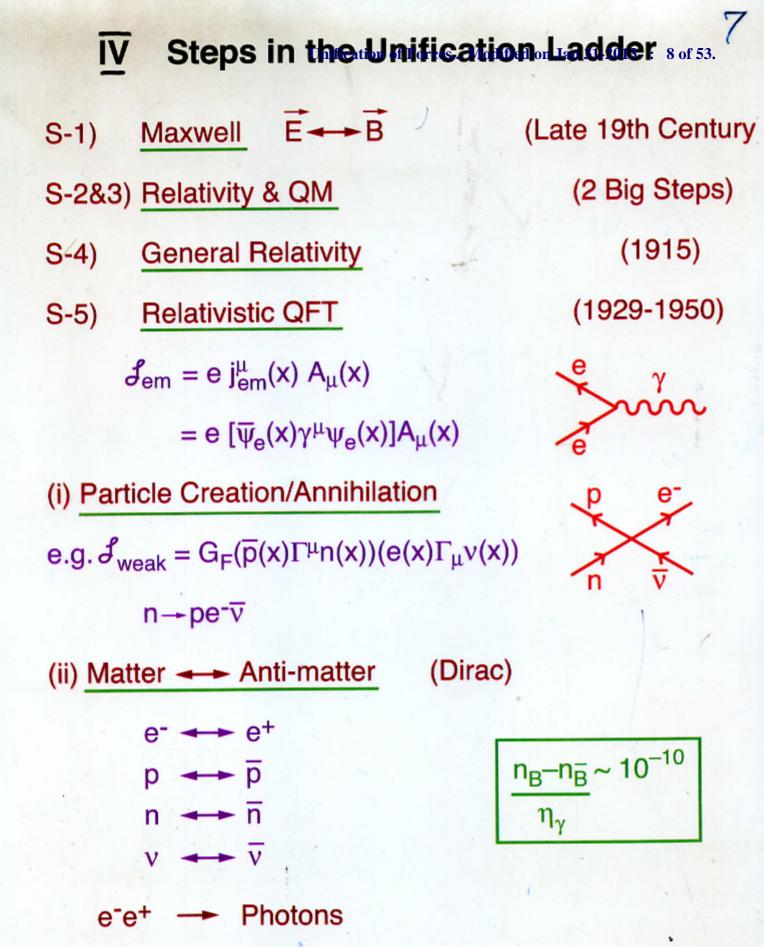
1) Why 3 Families? Why Nature Replicates?

2) Mass-Hierarchies (charged quarks and leptons)?

a) Inter-Family: mu: mc: mt ~ 10-5: 10-2: 1

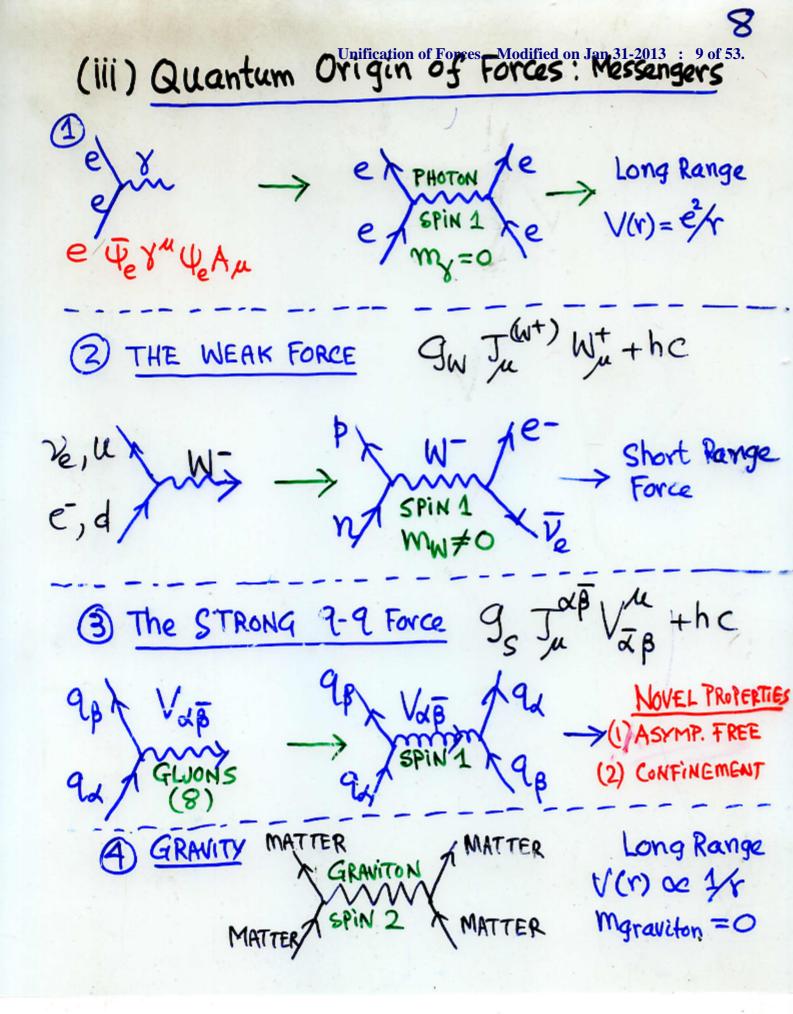
b) Intra-Family: mt: mb: mt~ 10-2: 1/40: 1

3) Neutrino Masses Way Out of Line


So So Light: $m(v_i) \neq 0$, But $\frac{m(v_\tau)}{m_{top}} \sim 10^{-12}$

Suggest New Physics Involved.

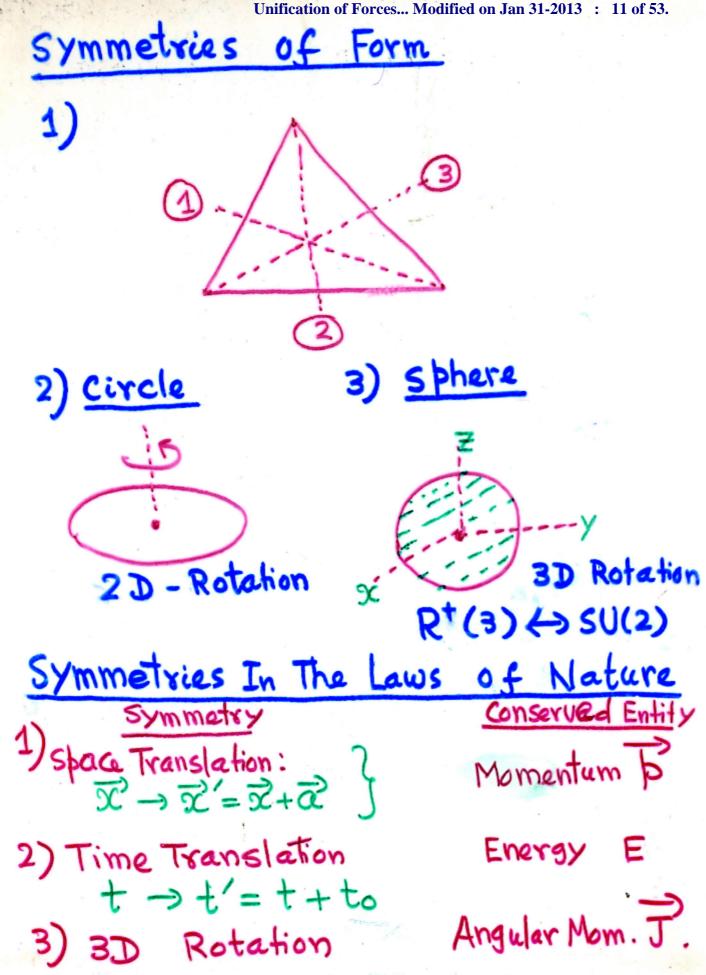
10-2000 8733A


C. The Four Basification of Fores. Modified on Jan 31-2013 : 7 of 53.

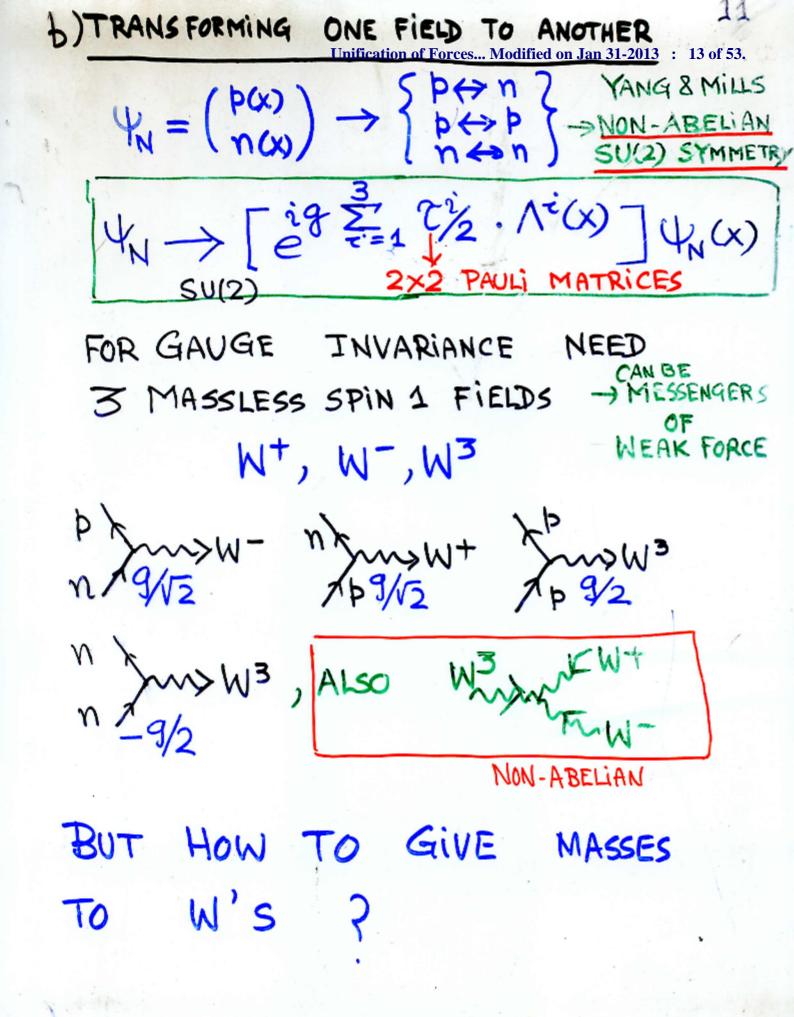
<u>Force</u> Strong	Acts on (P,n) +> Nuclear Force	<u>Messengers</u> (quanta) Pions (π)	$\frac{\text{Strength}}{9^2 4\pi}$	<u>Range</u> -13 10 cm.	
1	1-9-9 Force	Gluons(8)		_	
FLECTRO	0-0.0-b	Photon (8)	1/137	Infinite	
WEAK RADIO - ACTIVE	• $n \rightarrow P e^{-} \overline{y}_{e}$ • $\mu^{-} \rightarrow e^{-} \overline{y}_{e} y_{\mu}$ • $C \rightarrow S e^{+} y_{e}$	WŦ	105	10 cm	
	· Vue->Vue-	Z°	105	10 cm	
Fravity	Mass & Energy	Graviton	• 1039	Infinite	
 Superstrong Near Blackholes All Four Forces Crucial To The Cosmic Drama > Evolution of The Universe From Big Bang to Now/ origin of Life. > Even Neutrinos - Almost massless & Electrically crucial neutral, with only bleak & Gravit Forces - Play Such, roles. > Pre-designed ? 					

pp - Mesons

10-2006 8733A3

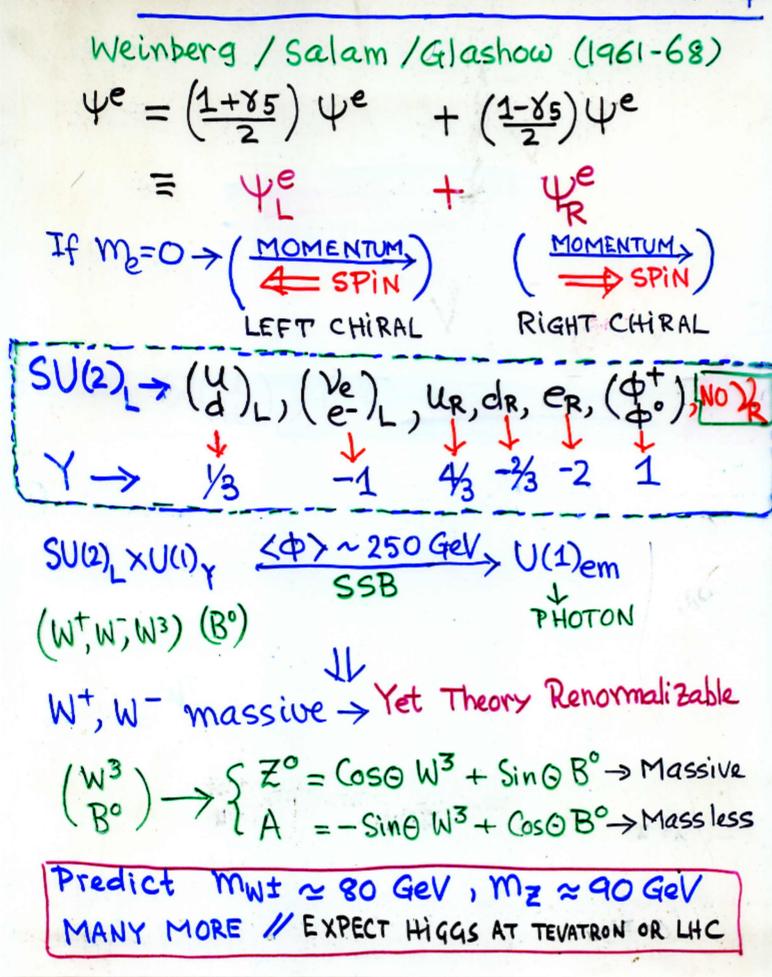


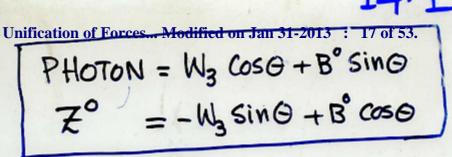
UNIFICATION Unification of Forces... Modified on Jan 31-2013 : 10 of 53. PARICLES & FORCES


1) SYMMETRY IN THE LAWS OF NATURE

2) SPONTANEOUS BREAKING OF SYMMETRIES

Unification of Forces... Modified on Jan 31-2013 11 of 53.

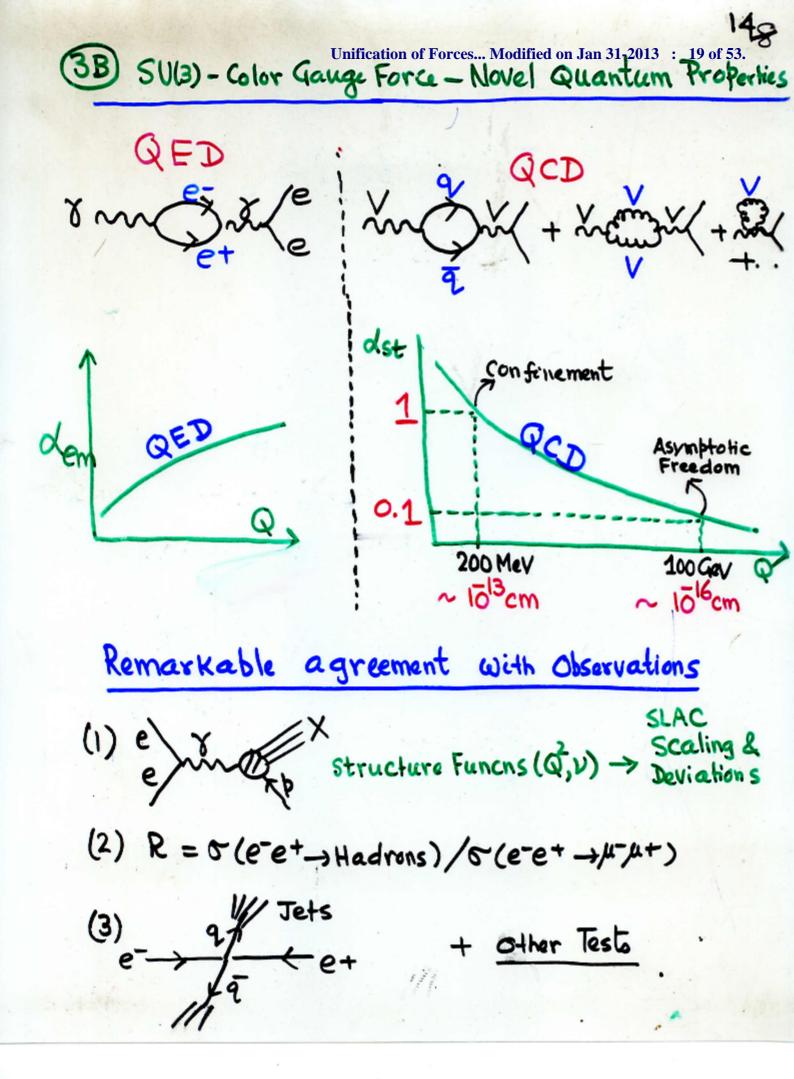

GAUGE SYM Mufication of Forces. Avio Hind an 30 2013 : 12 of 33. GENERATE FUNDAMENTAL INTERACTIONS 1) QUANTUM ELECTRODYNAMICS (QED) dfree = $\Psi(x)[iy^m\partial_m - m]\Psi(x)$ Dirac Invariant under year) -> èqen year) if A = Const. But if demand Invariance with $\Lambda = \Lambda(x)$, Need to introduce a massless spin=1 Field Au(x) with $A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}\Lambda(x) \rightarrow$ $d = \overline{\Psi}(x) \left[i \gamma^{m} (\partial_{\mu} - i Q_{e} A(x)) - m \right] \Psi(x)$ - 1/4 Fur + m2 A. A. (Fur JuA - 3, A.) nin te Qe ((x) y" (cx) -> A PRINCIPLE TO GENERATE FUND. INTERACTIONS -> QED Extremely Successful → Anom mag moment (g-2) -> Verified to 10th decimal place.


Unification of Forces... Modified on Jan 31-2013 S-8 Spontaneous Breaking of Symmetry: Higgs Mechanism Preserves Symmetry Breaks Symmetry Ground State Higgs / Englert & Brout/Kibble. + Anderson) Even if symmetry exact in Basic Eqns, Solutions need not preserve the Symmetry W+, W-, W3 become massive through SSB 1) Preserves Good Quantum Behaviour/ Renormalizable like QED Opens The Door To Higher Unification

13 Unification of Forces... Modified on Jan 31-2013 : 15 of 53. spin-O Higgs Field $\Phi(x)$ $V(\Phi) = \mu^2 \Phi(\Theta \Phi \phi) + \lambda (\Phi \Phi)^2$ <0,2>0 $\Lambda V(\Phi)$ STATE (Ground state) \$ Ground state > # 0 short Hand (0) \$10. or (\$)=0 VEV -> Vacuum Exp. Value = 0 -> symmetry sportly Broken

S-9 ELECTROWERALK or WWW. Find AT UN (650 (22 750) ())

SU(2) × U(1)


PREDICT 1 MW= ≈ 80 GeV FOUND MZ° ~ 90 Gev J HOST OF NEUTRAL CURPENT INT Va z° te vp→vp found Va z° te vp→vp found Va e Vn→vn (Parity Violation) 3 EXPECT HIGGS BOSON ~ 100-200 GeV MH. AT TEVATRON OR AT LEAST AT LHC!

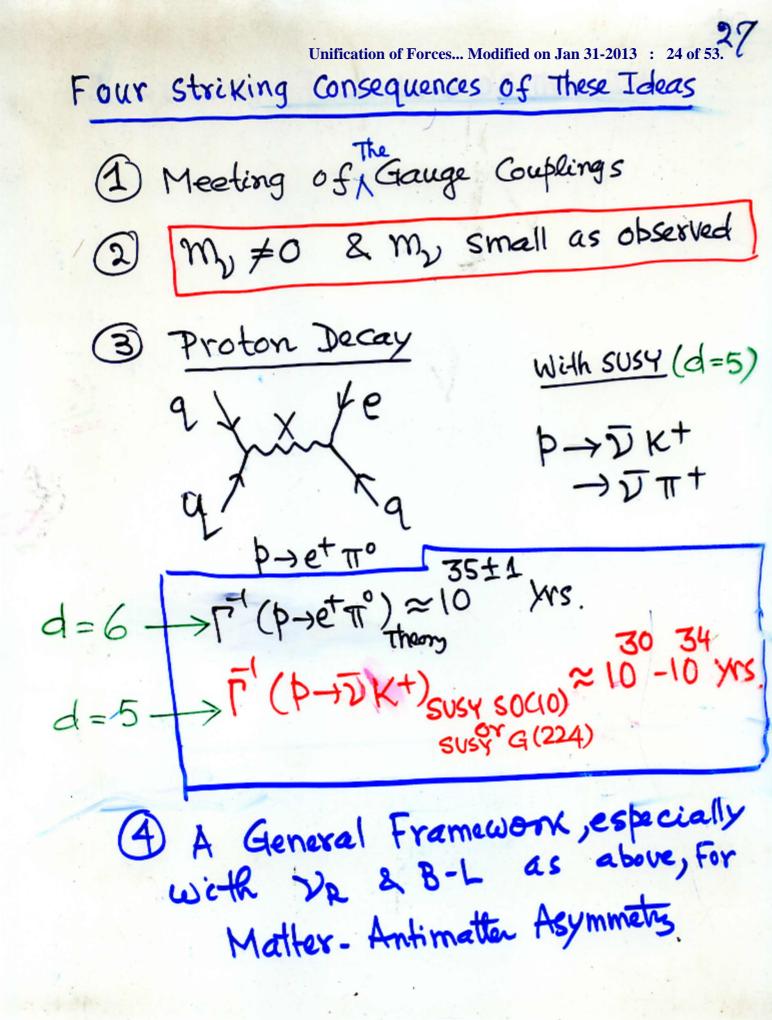
3 Color Gauge Fornicetion Oroigen MouficoStrange2 Interestion

1972 SU(2) LXU(1) X SU(3) C The Only way to generate strong Int. by a gauge principle, toge-ther with weaks EM int.

SU(3) Color gauge force → The ONLY SOURCE of
 Fund. Strong Int → NNTT, NNP, NNW are eff. int.
 (1972)

• Asymptotic Freedom : (Gross & Wilczek/Politzer -> 1973) $q_{\mu}^{u} = \begin{pmatrix} q_{\mu}^{u} \\ q_{\mu}^{u} \\ q_{\mu}^{u} \end{pmatrix} \xrightarrow{i \frac{1}{2}} \frac{1}{2} \cdot \frac{$

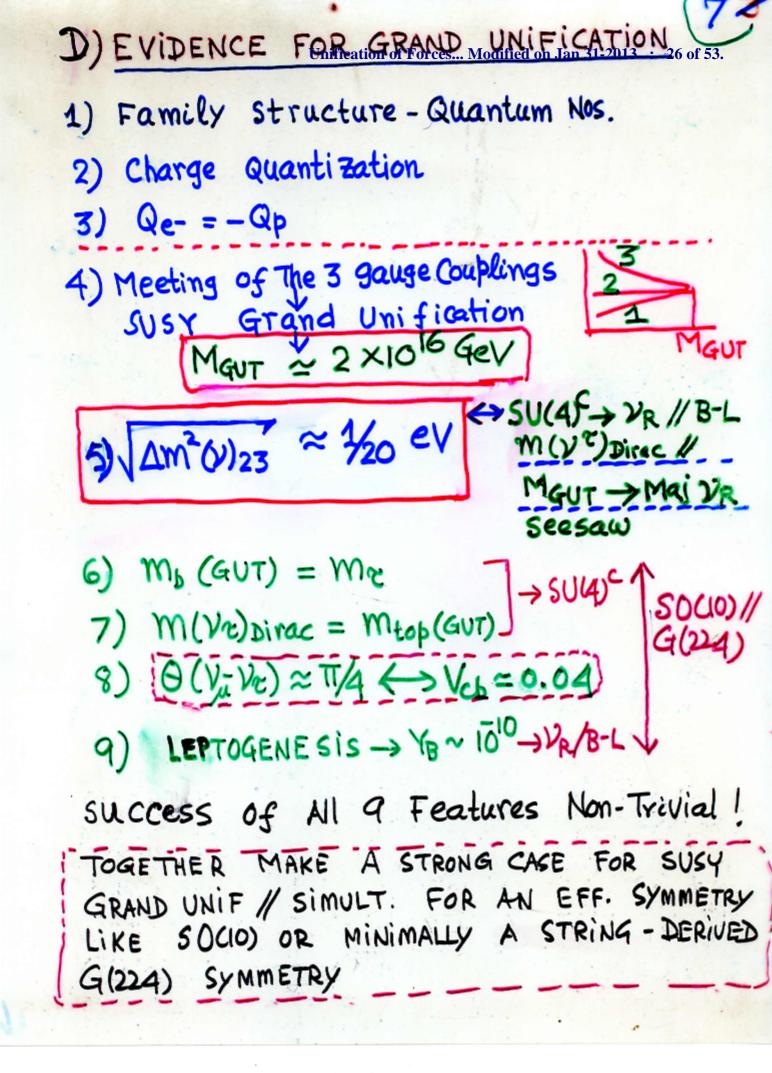
B)SM Now Brilliand Force Meinessfreihold : 20 of 53. Since 1972, both the SU(2) × U(1) EW Theory & QCD have been confirmed by numerous experiments -> A Triumph of Gauge Principle 255B -> Waiting To see Higgs at LHC/Fermilab But 3 Clear Evidence For Physics Beyond SM 1) > Masses (Zm2 ()23 ~/20eV) All Five Well 2) Higgs Mass Fine Tuning Go with susy 3) Need For Inflation Stations D=1 Grand Unification 4) Dark Matter (Cold): QCDM≈0.23 5) Baryogenesis (>Leptogenesis There exists Physics BEYOND SM 7 A MYSTERY FOR 6) Dark Energy: Cosm. Const. ALL THEORIES J2 A ≈ 0.72

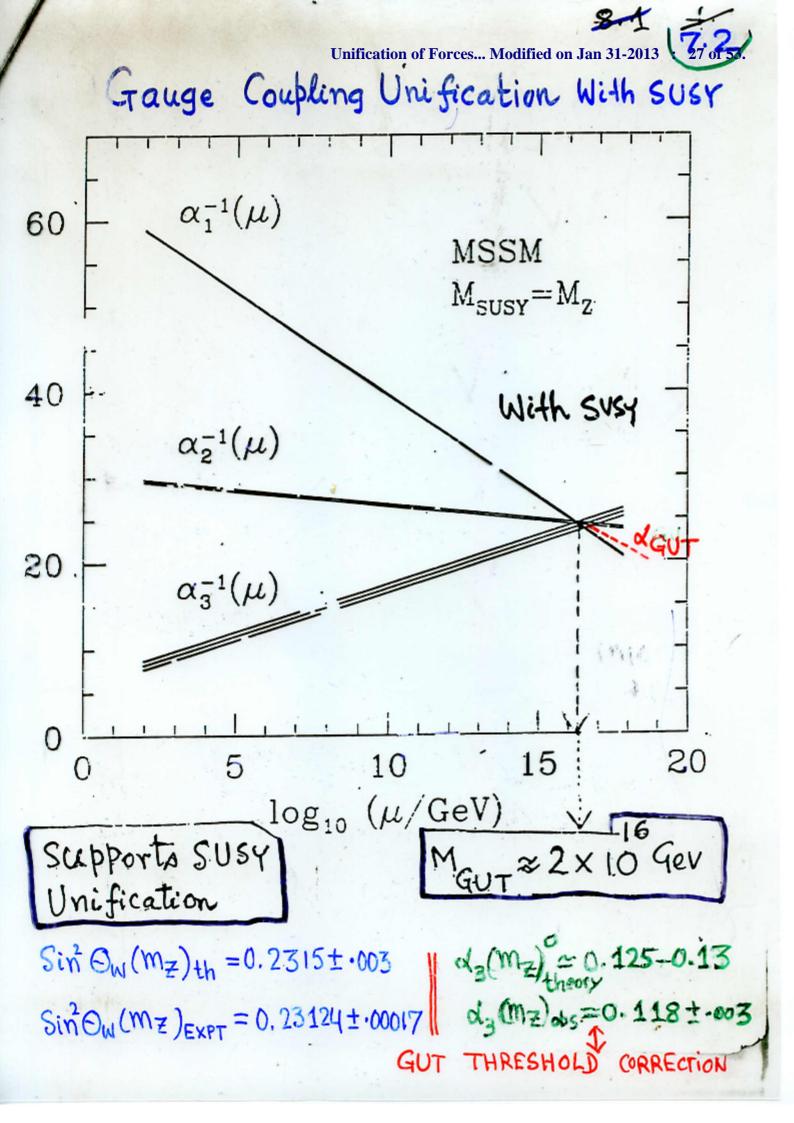

I) GRAND UNI FILCEAOTICONIES. OUTERWINEW013 : 21 of 53.
A) MOTIVATIONS (1972) > PURELY AESTHETIC
DRemove arbitrariness in choice of SM Quantum Nos. (Yw, SU(2)L, SU(3)C)
2 Quantization of Rem
$3 Q_{e-} = -Q_{p}$
(a) co-existence of 922
5 CO-existence of (W, EM, strong) (9, 9, 9)
MAIN I DEA (1972 - 74)
Dunify Equit Symmetry Group G
2 Unify {W, EM & strong} -> { Aspects of one Force Gauge symm. G
G <u>(Zi)~M</u> SUD) XUD XUD XUBS (AH) UU XSUBS
Distinctions between Eque 3 & [W, EM& strong]
forces -> Low Energy Phenomena arising from SSB -> To disappear at predictably high energies
MANY TESTABLE PREDICTIONS

B) Alt. Routes Unification of Forces... Modified on Jan 31-2013 :1 22 of 53. $G(2|3) = SU(2)_L \times U(1)_Y \times SU(3)^C$ (Ur Uy Ub) $(Ur, y, b)_R$ (4/3) (4/3) (2/2)5 disconn. multiplets//Arb. Yw, such, such a. Nos. G (224) = SU(2) × SU(2) × SU(4) × (LAR) 1972 $F_{L,R}^{e} = \begin{bmatrix} u_{r} & u_{y} & u_{b} & v_{e} \end{bmatrix} F_{L}^{e} = (2,1,4)$ $f_{L,R} = \begin{bmatrix} u_{r} & u_{y} & u_{b} & v_{e} \end{bmatrix} L_{R} F_{R}^{e} = (1,2,4)$ $Q_{em} = I_{3L} + I_{3R} + \frac{B-L}{2}$ Advantages of G(224) · All 16 in one L-R Conj multiplet // L-R symm · Explain YW & All Q. Nos. // Quantize Qem // V All Advantages of SO(10): 16 (one coupling) G(224) retained by 30(10), not 50(5) SUL5): 5+10 2, Problem With » Masses NO VR, NO B-L-J & Leptogeneois.

52

SOME PREDICATION Ses. 9Fodi GRAND 3 UNIFICATION Main JDEA GRAND UNIF. 2 SYMMETRY $G \Rightarrow F = \{q, e\}$ SPONT. SYMM. BREAKING (Z:)~10 GeV PART COMPANY (SU(2) × U(1) × SU(3) 921 PART COMPANY (thiggs > ~ 250 GeV U(1)em × SU(3)C LOW ENERGY SYMMETRY


EVENTHOUGH GRAND UNIF SYMM. HOLDS AT VERY VERY HIGH ENERGIES ~ 10⁶GeV, FORTUNATELY IT MAKES MANY PREDICTIONS THAT CAN BE TESTED AT LOW ENERGIES.



Unification of Forces... Modified on Jan 31-2013 ; 25 of 53. tol fand, Likhtman (71) (C) Supersymmetry Wess, Zumino (74) Fermions < Q > Bosons Spin O or 1 Spin 1/2 { Q, Q } = 20" Pu (quark) is a squark (q)o (lepton)1/2 (=> slepton (l)o (photon) 1 (> photino (8)1/2 Remarkable quantum Properties $\Phi_{-}(f) = \Phi_{+}(f) + \Phi_{-}(f) + \Phi_{-}(f)$ Sm_{Higgs} ~ $\frac{\omega_r}{\pi} [m_f^2 - m_f^2]$ π Fermion Bosc Expect (mã, mã, mã) < 1 Tev · Goes Well with Grand Unification,

· Needed by String Theory

· Lightest Susy Particle -> Candidate For Cold Dark Matter

Coupling Unification of Forces... Modified on Jan 30203 : 28705 3 $\alpha_1^{-1}(\mu)$ 60 40 $\alpha_{\mathbf{2}}^{-1}(\mu)$ 20 Standard Model Without SUSY $\alpha_3^{-1}(\mu)$ 0 5 10 20 15 \log_{10} (μ/GeV) di'S Measured at LEP at ~ 100 GeV

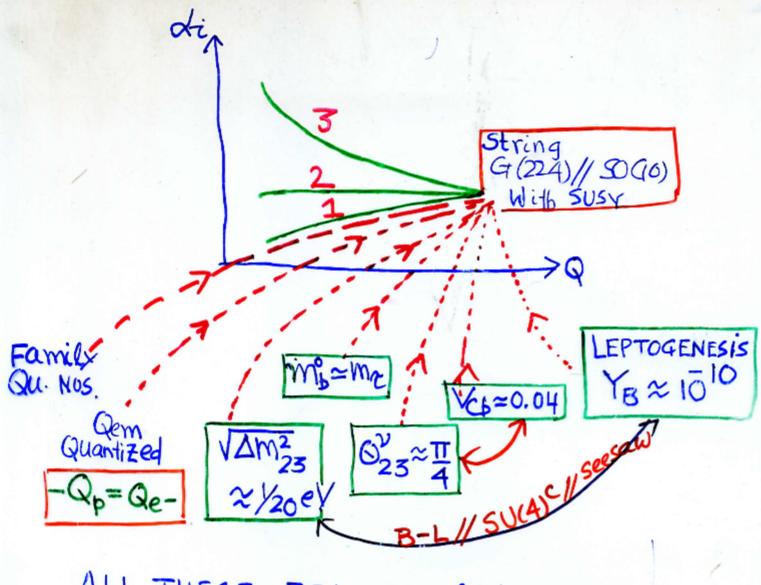
a

SUPERKAMIOKANDE water Cerenkov detector Discovery of Atmospheric Neutrino Oscillation, 1998

DISCOVERY Of Unification of Brees. Wolfied on Jan 31-2013 : 30 of 53. (1) Atmospheric (SuperK) 1998 50 KT Water Genenkov Detector TT+ -> u+ Vu > Vue+ Ve Gev cosmic ray flux iso tropic Vulpward Va Downward With MultiGer D's Flux up (-1 (cos Oz <-0.2) K · Flux Down (+.2 (CosOz (+1) $= 0.54 \pm 0.04$ => Va has converted to 2x = 22 $\left[\Delta m_{23}(v)\right] = \left[m_{3}^{2} - m_{2}^{2}\right] = (2.5 \pm .3) \times 10^{6} eV^{2}$ $\approx (\frac{1}{20} eV)^{2}$ $Sim^2 \Theta_{23} = 4.02 \pm .04$ $\begin{aligned} \mathbb{P}(\mathcal{Y}_{\mu} \rightarrow \mathcal{Y}_{X})_{L} &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left(\frac{\operatorname{Am}^{2} L}{4 E} \right) \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) L(Km) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \mathbb{O} \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2} \left[\frac{1 \cdot 27}{4 \pi} \operatorname{Am}^{2} (ev^{2}) \right] \\ &= \operatorname{Sir}^{2$

V Mass coithinightion & Dep. Massicin JS61(241) - Colsor 1) Can have DiRAC Mass ho Di Vi (4) +hc (AL=0) $\implies m(y^{i})$ Dirac = $h_{\phi}^{i}(\phi) \approx h_{\phi}^{i}(200 \text{ GeV})$ 2 BUT DR Can have superheavy Majorana Mass $h_{M} \mathcal{V}_{R}^{T} \mathcal{V}_{R} \langle Z^{eff} \rangle \Rightarrow M(\mathcal{V}_{R}) = h_{M}(Z) \\ \Delta L = -2 \qquad \sim h_{M} (GUT - scale)$ $\frac{\mathcal{V}_{L}}{\mathcal{V}_{R}} \begin{bmatrix} \mathcal{V}_{L} & \mathcal{V}_{R} \\ \mathcal{V}_{L} & \mathcal{M}(\mathcal{V}_{R}) \end{bmatrix} \rightarrow \approx \begin{bmatrix} \mathcal{V}_{L} & \mathcal{V}_{R} \\ -\mathcal{M}(\mathcal{V}_{R})^{2} \mathcal{M}(\mathcal{V}_{R}) \\ \mathcal{V}_{R} & \mathcal{M}(\mathcal{V}_{R}) \end{bmatrix} \rightarrow \approx \begin{bmatrix} \mathcal{V}_{L} & \mathcal{V}_{R} \\ -\mathcal{M}(\mathcal{V}_{R})^{2} \mathcal{M}(\mathcal{V}_{R}) \\ \mathcal{V}_{R} & \mathcal{M}(\mathcal{V}_{R}) \end{bmatrix}$ $m(y_{L}) \simeq m(y_{D}) M(y_{R})$ NATURALLY SUPERLIGHT

IIA) Insight From SuperKin Result: Among Jan 1420 - 51 9 m(zrirac)2 SeeSaw ignore mixing for a moment m(2°) ≈ M(VE) $(a) m(y_{\text{Dirac}}^{2}) \approx m_{t}(M_{x}) \approx 120 \text{ GeV} \notin SU(4) - \text{ Golor}$ min me (b) Get M(VR) from SUSY Unif. Scale: Mx = 2x10¹⁶ GeV $f_{33} | G_3 | G_3 \langle \overline{1}G_H \rangle \langle \overline{1}\overline{6}H \rangle \Rightarrow M(v_R^{\tau}) \sim (2 \times 10^{6} \text{GeV})^{2}$ $(\approx 1) \qquad M \Rightarrow 10^{18} \text{GeV} \approx [4 \times 10^{14} \text{GeV} (1/2^{-2})]$ $m(y_{L}^{2}) \sim \frac{(120 \text{ GeV})^{2}}{4 \times 10^{14} \text{ GeV}} \approx (\frac{1}{30} \text{ eV})(\frac{1}{2} \text{ to } 2)$ Also get $m(v_L^{\prime\prime}) \sim \underline{m(v_L^{\prime\prime})} \Rightarrow \Delta \widehat{m(v_2)}_{Th} \approx (\frac{1}{30} eV)(\frac{1}{2} - 2)$ Thus Superk result brings to light the existence of VR // reinforces - the ideas of 2) See Saw // 16) SU(4) Color // & (c) SUSY Unif


Summery on Fermion Masse	S & Mixings (Babu, Pati Modified on Jan 31-201 Babu, Pati Will (Fek)
Predictions	Observations
mb(mb) ≈ (4.7-4.9)GeV	$\approx 4.2 \text{GeV}$
$\sqrt{\Delta m_{23}^2(v)} \sim (.\frac{1}{24}ev)(\pm -2)$	≈(1/15 - 1/25)eV+ (*)
Vcb = 0.043	~ 0.04
	$1 \approx 0.92 \leftrightarrow 1$
$Sin 20^{osc}_{uvt} \approx 0.92 \times 10.995$ $V_{uvt} \approx Mu_3/m_y \approx 1/10 - 1/10$ $V_{us} \approx 0.23$	¹ 5 ≈ 0.22
$ V_{ub} \simeq 0.0032$	× 0.003-0.004
my (IGeV) = 8 MeV	~ 6-8 MeV
$m(V_2) \approx (2-10) \times 10^3 eV \ll$ $m(V_1) \sim (1 to few) \times 10^8 eV$	LMA ~ JXIO'eV
m (V1)~ (1 to few) XIOeV	Consistent with the framework
$M(\mathcal{Y}_{R}^{3''}, \mathcal{Y}_{R}^{2''}, [\mathcal{Y}_{R}^{T}]) \approx (10)$ $Just si$	
and the second sec	
NOTE 22- Masses Necess	arily Hierarchical.

Starting at Daryon - Symmetric Universe at t=0 (BigBang) or just at the beginning of reheating after inflation, what eventually caused $Y_B = \frac{n_B - n_{\bar{B}}}{c} = 8.7 \times 10^{-11}$ (WMAP) Sakharov S(1) C & CP Non-Conservation Need (1967) (2) AB ≠ 0 Processes (3) Thermodynamic Non-equilibrium Most Promising Explanation $M(\mathcal{V}_R)$ \mathcal{V}_R^T \mathcal{V}_R +he $(\Delta L = \pm 2)$ \mathcal{V}_{R} \mathcal{V}_{R} \mathcal{V}_{R} \mathcal{V}_{R} \mathcal{V}_{R} \mathcal{I}_{H} \mathcal{I}_{H} => ME = ME With TRH~106-10Ger Fukugita Yanagida $Y_{L} \neq 0$ $\overrightarrow{SU(2)}_{XU(1)}$ $Y_{B} \neq 0$ (sphaleron Effect Quantitatively (YB ~ (10-100) x10⁻¹¹ (As Needer) NATURALLY Get For PCP ~ 10-1

Rendevouz In Particle Physics

Unification of Forces... Modified on Jan 31-2013 : 35 of 53

ALL THESE FEATURES & MORE HANG TOGETHER NEATLY IN A SINGLE UNIFIED FRAME WORK -> HARD TO IMAGINE THIS CAN BE MERE COINCIDENCE

TWO MISSING PIECES

 PROTON DECAY -> Need NEXT GEN. DETECTOR
 SUPERSYMMETRY -> LHC

5-14	Superstring / M - Theory Unification of Forces N	Green, Schwar Z (84) Iodified on Jan 31-2013 : 36 of 53.
	d=10/11	

Point Pasticle

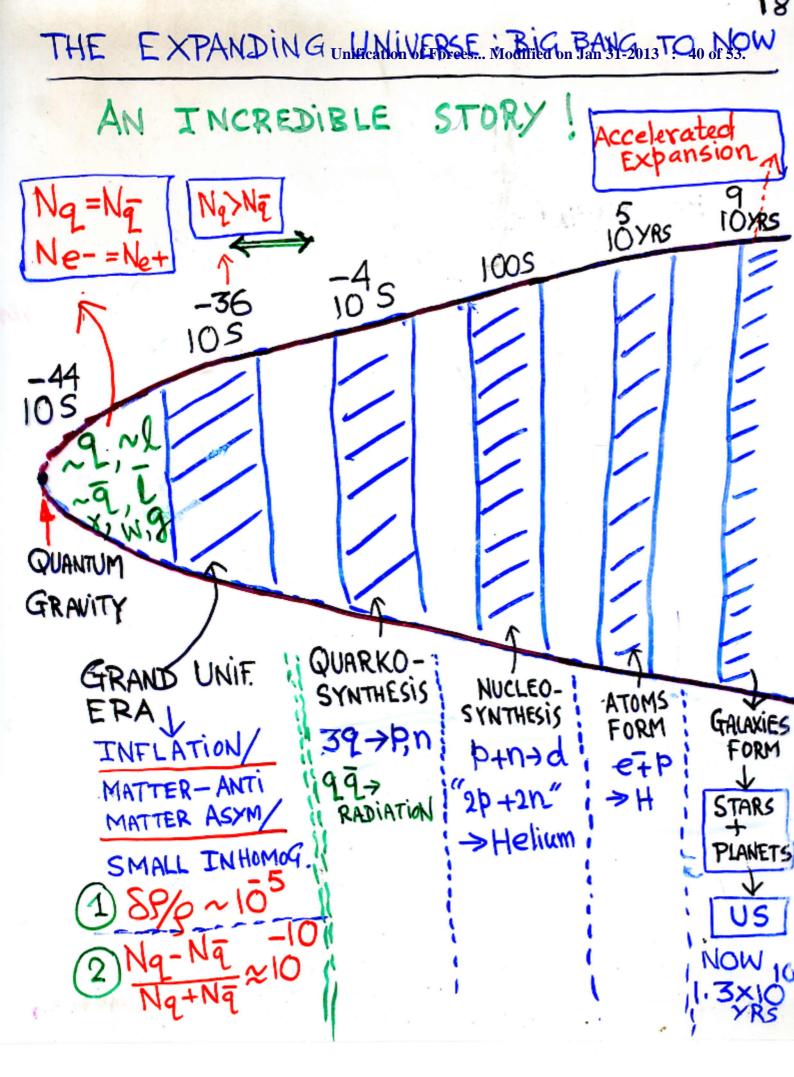
+ Vibrational Modes Tiny string~10° cm {(9, l)}2 + (gluons, W, Z, 8)1 +(Higgs)0+(Graviton)2 + + + SUSY Partners

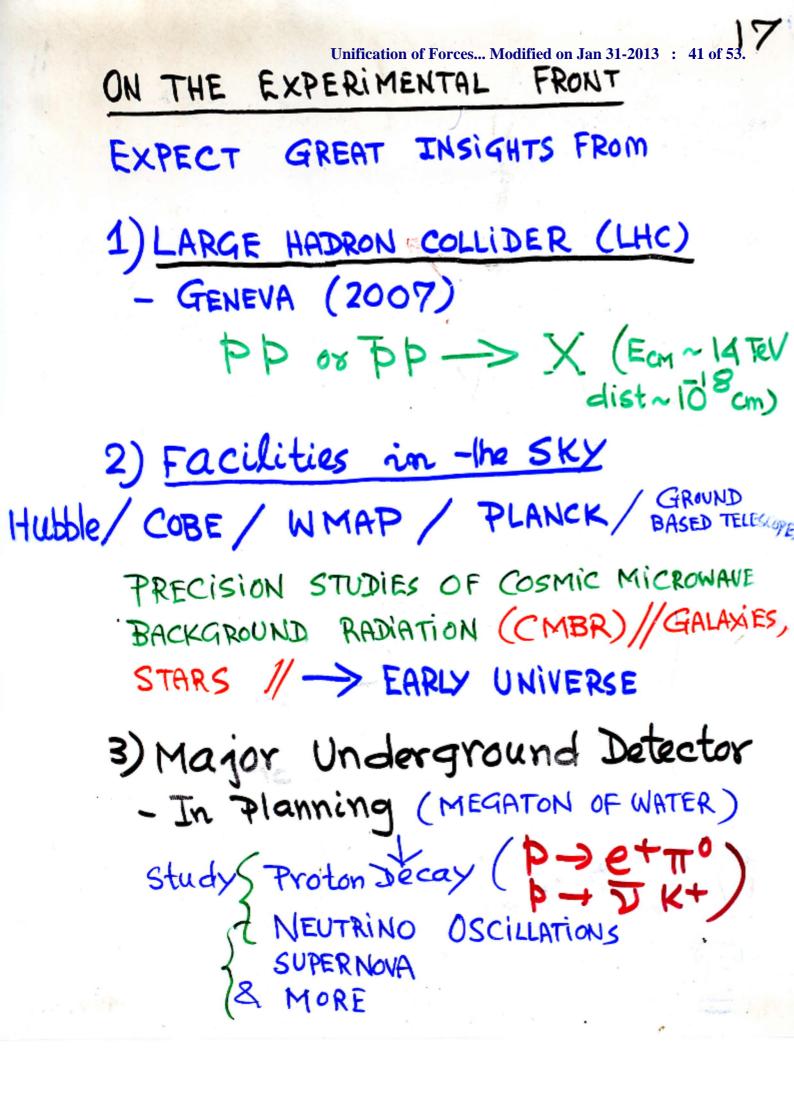
World Sheet

1 Dim World Line

- THE MOST UNIFYING THEORY OF ALL
- Predicts gravity, together with the Other Forces - Unifies all four forces
- Different Elementary Entities → Diff.
 Vibrational Modes of one & the same Entity
 Unifies All matter
 - · Good Quantum Theory of Gravity
 - <u>In principle</u> Can go Sufficiently
 Deyond Grand Unification in predictions
 (i) # Families = 3 ?
 (ii) Hierarchical Masses & Mixings ?

Unification of Forces... Modified on Jan 31-2013 : 37 of 53.

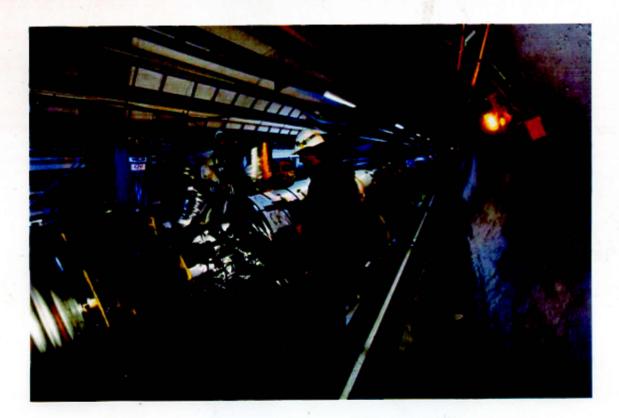

93

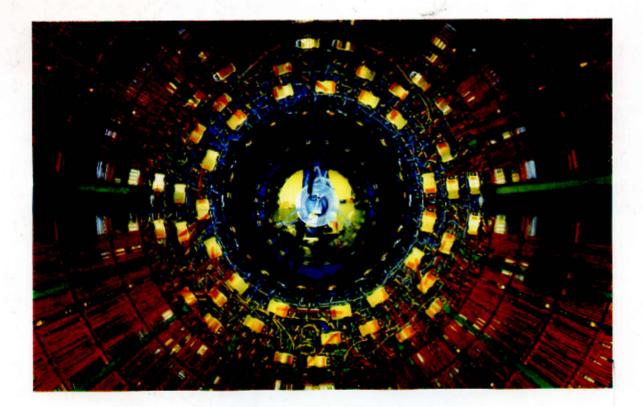

- In practise, not yet possible to extract either a unique or a non-densely discrete set of Solms for the ground stale of the -theory.
- -> Thus not yet possible to compare String Theory with experiments
- > The Theory Still boorly understood both in formulation and in its non-perturbative aspects
- -> Very likely Some essential ingredients Still missing

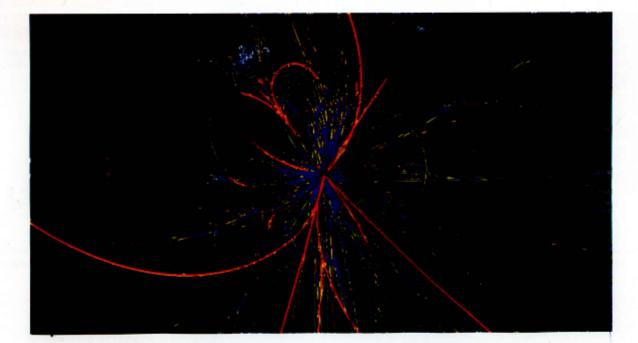
-> A GREAT CHALLENGE TO FIND A TRULY UNIFIED QUANTUM THEORY OF GRAVITY, which is PREDICTIVE

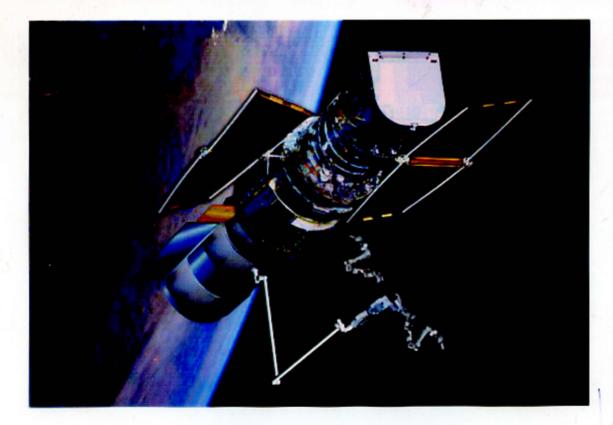
Finstein -> Friedman / Lemaitre in 34(4)= Ret & (6) $\frac{\left(\frac{R}{R}\right)^{2} + \frac{K}{R^{2}} = \frac{8\pi GP}{3} + \frac{\Lambda}{3}$ Universal Scale Factor K = Curvature of space > C + Ve curvatureSphere (closed, Saddle (Infinite, open) KKO Flat (Infinite, Open) K = 0|H(t) =R/R $\Rightarrow d(t) = V(t)/H(t)$ BigBang : Universe Now Expanding. => Going Backwards in time, separations among the objects in the Universe -> O $K^{O(OPEN)} d(t) = R(t) d(t_0)$ If V Const R(+) K=0 flat thow = drow v = 1 K >0 CLosed ≈ 15 billionyrs. Allowing for varying H (4) tAge ~ (13.7) billion Yrs

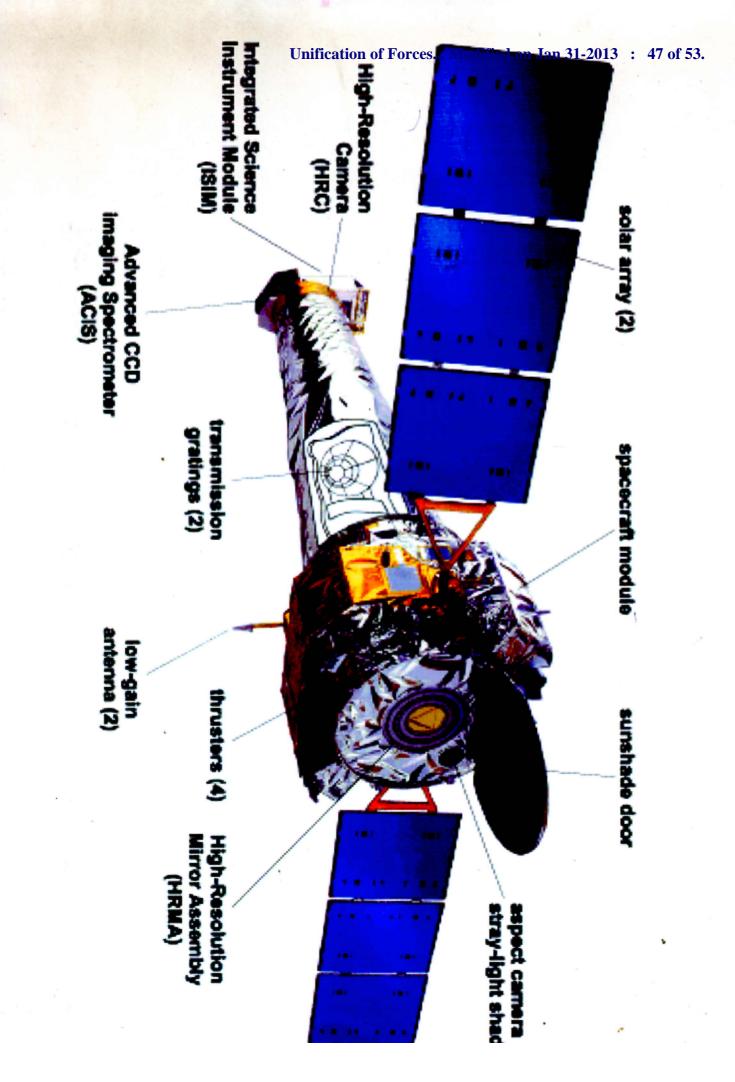
Critical S = 3H/8πG ≈ 8×10 gm/cm3 (For H = 17 Km/sec/ 1 million Ltyr) Juisible ~ 10 Scritical But see Strong evidences for dark matter PTOT = PVis + Pdank + Matter 2 Tot = Prot ~ 1 XXXXXX 23% Thermal History From Einstein's Egn: tsec ~ (KT)2 Typical times VS Temp t >0, KT -> 0 TEIOK=KT~1019 GeV => tsec~ 1044 sc Taiok⇒KT~ 106 GeV ⇒ t ≈ 1038 sec G кт ~ 300 MeV =) t ~ 10 Sec KT ~ KO Mer => t 100 Sec . \approx 1 MeV = (K) (10 Kelvin)




Unification of Forces... Modified on Jan 31-2013 : 42 of 53.

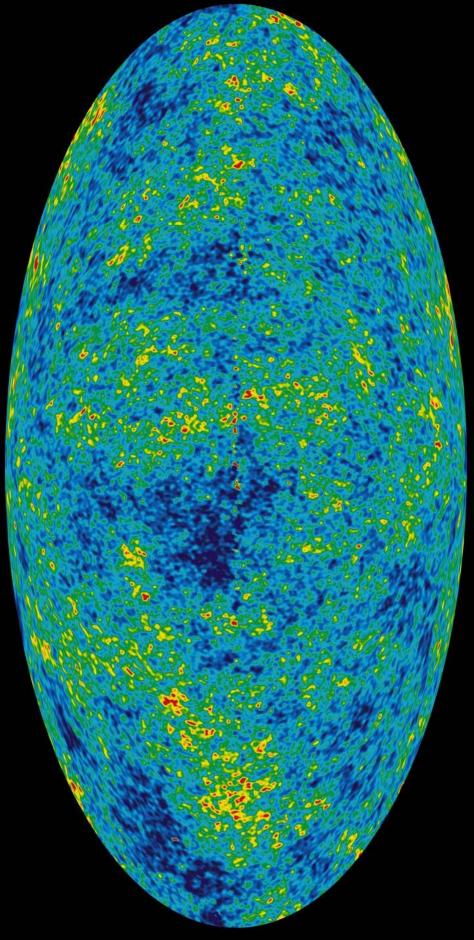

LHC RING OVER SWITZERLAND AND FRANCE (27 k.m. Ring)

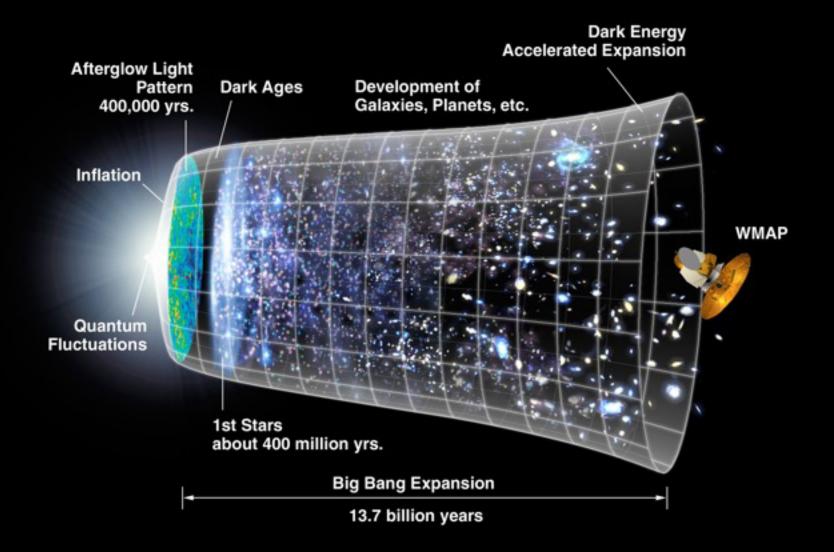

LHC - SECTION

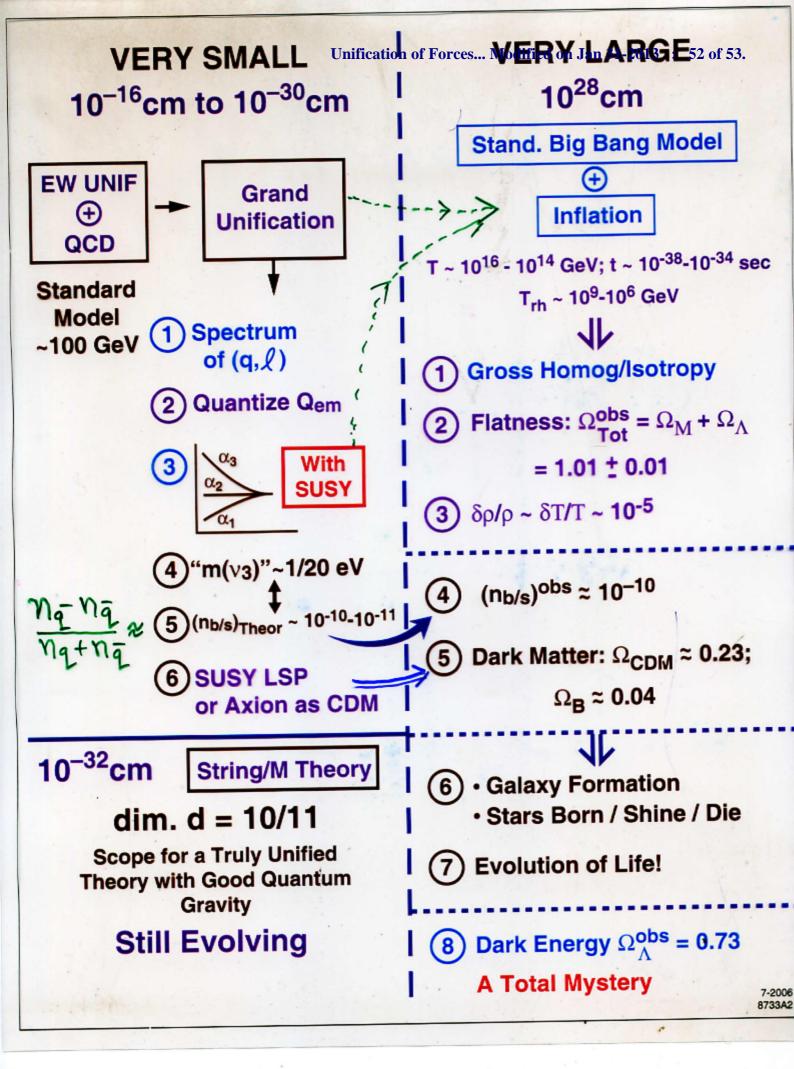

LHC - DETECTOR



LHC Interactions


HUBBLE SPACE TELESCOPE





Unification of Forces... Modified on Jan 31-2013 : 49 o

SCIENCEPhotoLIBRARY

Unification of Forces... Modified on Jan 31-2013 : 53 of 53.

CONCLUSION EINSTEIN'S DREAM OF UNIFYING GRAVITY WITH EM FORCE, & from THE PRESENT VIEWPOINT UNIFYING GRAVITY WITH EM, WEAK & STRONG FORCES STILL REMAINS TO BE FULFILLED -> THOUGH GREAT PROGRESS HAS OCCURRED IN 4 DECADES

-> STRONG EVIDENCE FOR GRAND UNIFICATION (WEAK, EM & STRONG FORCES) -> CRUCIAL FURTHER TEST (PROTON DECAY) NEED MEGATON DETECTOR

-> STRING/M THEORY SHOWS PROMISE TO UNIFY All THE FORCES // REMAINS A CHALLENGE

-> WHATEVER THE EVENTUAL FORM OF THE

"ULTIMATE" THEORY , ONE EXPECTS TO SEE

UNITY BEHIND FAR GREATER DIVERSITY A SYNTHESIS FAR GREATER THAN ONE CAN CONCEIVE OF AT PRESENT

> THAT IS THE CHALLENGE !